=IDFT[
]发生了时域混叠失真,而且
的长度N也比x(n)的长度M短,因此。
与x(n)不相同。
在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。
对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:
“时域采样频谱周期延拓,频域采样时域信号周期延拓”。
因此放在一起进行实验。
三、实验内容及步骤
1、时域采样理论的验证
给定模拟信号,
式中A=444.128,
=50
π,
=50
πrad/s,它的幅频特性曲线如图2.1
结果分析:
由图2.2可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。
当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严重。
由实验图像可以看出,时域非周期对应着频域连续。
对连续时间函数对采样使其离散化处理时,必须满足时域采样定理的要求,否则,必将引起频域的混叠。
要满足要求信号的最高频率Fc不能采样频率的一半(Fs/2),不满足时域采样定理,频率将会在ω=π附近,或者f=Fs/2混叠而且混叠得最严重。
2、频域采样理论的验证
给定信号如下:
编写程序分别对频谱函数
在区间
上等间隔采样32
和16点,得到
:
再分别对
进行32点和16点IFFT,得到
:
分别画出
、
的幅度谱,并绘图显示x(n)、
的波形,进行对比和分析,验证总结频域采样理论。
提示:
频域采样用以下方法容易变程序实现。
①直接调用MATLAB函数fft计算
就得到
在
的32点频率域采样
②抽取
的偶数点即可得到
在
的16点频率域采样
,即
。
当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是
在
的16点频率域采样
。
Matlab源代码:
M=27;N=32;n=0:
M;
%产生M长三角波序列x(n)
xa=0:
floor(M/2);xb=ceil(M/2)-1:
-1:
0;xn=[xa,xb];
Xk=fft(xn,1024);%1024点FFT[x(n)],用于近似序列x(n)的TF
X32k=fft(xn,32);%32点FFT[x(n)]
x32n=ifft(X32k);%32点IFFT[X32(k)]得到x32(n)
X16k=X32k(1:
2:
N);%隔点抽取X32k得到X16(K)
x16n=ifft(X16k,N/2);%16点IFFT[X16(k)]得到x16(n)
subplot(3,2,2);stem(n,xn,'.');boxon
title('(b)三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])
k=0:
1023;wk=2*k/1024;%
subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');
xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])
k=0:
N/2-1;
subplot(3,2,3);stem(k,abs(X16k),'.');boxon
title('(c)16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])
n1=0:
N/2-1;
subplot(3,2,4);stem(n1,x16n,'.');boxon
title('(d)16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])
k=0:
N-1;
subplot(3,2,5);stem(k,abs(X32k),'.');boxon
title('(e)32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])
n1=0:
N-1;
subplot(3,2,6);stem(n1,x32n,'.');boxon
title('(f)32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])
实验图像
结果分析:
该图验证了频域采样理论和频域采样定理。
对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N=16时,N点IDFT[
]得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:
由于N与x(n)不相同,如图图3.3(c)和(d)所示。
当N=32时,如图图3.3(c)和(d)所示,由于N>M,频域采样定理,所以不存在时域混叠失真,因此,
与x(n)相同。
由实验内容2的结果可知,对一个信号的频谱进行采样处理时,必须严格遵守频域采样定理,否则,用采样的离散频谱恢复原序列信号时,所得的时域离散序列是混叠失真,得不到原序列
四、实验思考及解答
如果序列x(n)的长度为M,希望得到其频谱
在
上的N点等间隔采样,当N答:
由实验内容2的结果可得:
对于求频域采样点数N小于原时域序列长度M的N点离散频谱时,可先对原序列x(n)以N为周期进行周期延拓后取主值区序列
再计算N点DFT则得到N点频域采样:
但是,所求的N点离散频谱对应的时域离散序列是原序列x(n)以N为周期进行周期延拓后取主值区序列,而不是原序列x(n)
五、实验小结
通过此次实验,对时域采样和频域采样的理论、定理的理解更加深入。
采样是模/数中最重要的一步,采样方法的正确与否,关系到信号处理过程的成功与否。
所以,无论是在时域还是频域,对信号采样必须仔细考虑采样的参数:
采样频谱、采样周期、采样点数。
对一个域进行采样,必将引起另一个域的周期延拓,所以,我们要做,就是选取好采样的参数,避免另一个域周期延拓时发生混叠,否则,我们采样所得的数据肯定丢失一部分原信号的信息,我们便无法对原信号对原信号进行恢复和正确分析。
此次实验所遇到的问题:
主要是时域非周期对应频域连续,频域周期对应着时域离散(DFT隐含周期性),频域非周期对应时域连续。
对时域与频域的关系,还没彻底弄懂,stem和plot绘图函数有时会用错。