交通灯控制系统外文翻译.docx

上传人:b****3 文档编号:26489094 上传时间:2023-06-19 格式:DOCX 页数:10 大小:39.19KB
下载 相关 举报
交通灯控制系统外文翻译.docx_第1页
第1页 / 共10页
交通灯控制系统外文翻译.docx_第2页
第2页 / 共10页
交通灯控制系统外文翻译.docx_第3页
第3页 / 共10页
交通灯控制系统外文翻译.docx_第4页
第4页 / 共10页
交通灯控制系统外文翻译.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

交通灯控制系统外文翻译.docx

《交通灯控制系统外文翻译.docx》由会员分享,可在线阅读,更多相关《交通灯控制系统外文翻译.docx(10页珍藏版)》请在冰豆网上搜索。

交通灯控制系统外文翻译.docx

交通灯控制系统外文翻译

本科生毕业设计(论文)

外文文献翻译

毕业设计题目:

交通灯智能控制系统

 

学院:

信息科学与工程学院

专业班级:

测控技术与仪器0703班

学生姓名:

王欣

指导教师:

桑海峰

2011年3月19日

外文原文

IntelligentTrafficLightControl

MarcoWiering,JellevanVeenen,JillesVreeken,andArneKoopmanIntelligentSystemsGroup

InstituteofInformationandComputingSciencesUtrechtUniversity

Padualaan14,3508TBUtrecht,TheNetherlands

email:

marco@cs.uu.nl

July9,2004

Abstract

Vehiculartravelisincreasingthroughouttheworld,particularlyinlargeurbanareas.Thereforetheneedarisesforsimulatingandoptimizingtrafficcontrolalgorithmstobetteraccommodatethisincreasingdemand.Inthispaperwestudythesimulationandoptimizationoftrafficlightcontrollersinacityandpresentanadaptiveoptimizationalgorithmbasedonreinforcementlearning.Wehaveimplementedatrafficlightsimulator,GreenLightDistrict,thatallowsustoexperimentwithdifferentinfrastructuresandtocomparedifferenttrafficlightcontrollers.Experimentalresultsindicatethatouradaptivetrafficlightcontrollersoutperformotherfixedcontrollersonallstudiedinfrastructures.

Keywords:

IntelligentTrafficLightControl,ReinforcementLearning,Multi-AgentSystems(MAS),SmartInfrastructures,TransportationResearch

1Introduction

Transportationresearchhasthegoaltooptimizetransportationflowofpeopleandgoods.Asthenumberofroadusersconstantlyincreases,andresourcesprovidedbycurrentinfrastructuresarelimited,intelligentcontroloftrafficwillbecomeaveryimportantissueinthefuture.However,somelimitationstotheusageofintelligenttrafficcontrolexist.Avoidingtrafficjamsforexampleisthoughttobebeneficialtobothenvironmentandeconomy,butimprovedtraffic-flowmayalsoleadtoanincreaseindemand[Levinson,2003].

Thereareseveralmodelsfortrafficsimulation.Inourresearchwefocusonmicroscopicmodelsthatmodelthebehaviorofindividualvehicles,andtherebycansimulatedynamicsofgroupsofvehicles.Researchhasshownthatsuchmodelsyieldrealisticbehavior[NagelandSchreckenberg,1992,WahleandSchreckenberg,2001].

Carsinurbantrafficcanexperiencelongtraveltimesduetoinefficienttrafficlightcontrol.Optimalcontroloftrafficlightsusingsophisticatedsensorsandintelligentoptimizationalgorithmsmightthereforebeverybeneficial.Optimizationoftrafficlightswitchingincreasesroadcapacityandtrafficflow,andcanpreventtrafficcongestions.Trafficlightcontrolisacomplexoptimizationproblemandseveralintelligentalgorithms,suchasfuzzylogic,evolutionaryalgorithms,andreinforcementlearning(RL)havealreadybeenusedinattemptstosolveit.Inthispaperwedescribeamodel-based,multi-agentreinforcementlearningalgorithmforcontrollingtrafficlights.

Inourapproach,reinforcementlearning[SuttonandBarto,1998,Kaelblingetal.,1996]withroad-user-basedvaluefunctions[Wiering,2000]isusedtodetermineoptimaldecisionsforeachtrafficlight.Thedecisionisbasedonacumulativevoteofallroadusersstandingforatrafficjunction,whereeachcarvotesusingitsestimatedadvantage(orgain)ofsettingitslighttogreen.Thegain-valueisthedifferencebetweenthetotaltimeitexpectstowaitduringtherestofitstripifthelightforwhichitiscurrentlystandingisred,andifitisgreen.Thewaitingtimeuntilcarsarriveattheirdestinationisestimatedbymonitoringcarsflowingthroughtheinfrastructureandusingreinforcementlearning(RL)algorithms.

Wecomparetheperformanceofourmodel-basedRLmethodtothatofothercontrollersusingtheGreenLightDistrictsimulator(GLD).GLDisatrafficsimulatorthatallowsustodesignarbitraryinfrastructuresandtrafficpatterns,monitortrafficflowstatisticssuchasaveragewaitingtimes,andtestdifferenttrafficlightcontrollers.Theexperimentalresultsshowthatincrowdedtraffic,theRLcontrollersoutperformallothertestednon-adaptivecontrollers.Wealsotesttheuseofthelearnedaveragewaitingtimesforchoosingroutesofcarsthroughthecity(co-learning),andshowthatbyusingco-learningroaduserscanavoidbottlenecks.

Thispaperisorganizedasfollows.Section2describeshowtrafficcanbemodelled,predicted,andcontrolled.Insection3reinforcementlearningisexplainedandsomeofitsapplicationsareshown.Section4surveysseveralpreviousapproachestotrafficlightcontrol,andintroducesournewalgorithm.Section5describesthesimulatorweusedforourexperiments,andinsection6ourexperimentsandtheirresultsaregiven.Weconcludeinsection7.

2ModellingandControllingTraffic

Inthissection,wefocusontheuseofinformationtechnologyintransportation.Alotofgroundcanbegainedinthisarea,andIntelligentTransportationSystems(ITS)gainedinterestofseveralgovernmentsandcommercialcompanies[Ten-TexpertgrouponITS,2002,WhitePaper,2001,EPA98,1998].

ITSresearchincludesin-carsafetysystems,simulatingeffectsofinfrastructuralchanges,routeplanning,optimizationoftransport,andsmartinfrastructures.Itsmaingoalsare:

improvingsafety,minimizingtraveltime,andincreasingthecapacityofinfrastructures.Suchimprovementsarebeneficialtohealth,economy,andtheenvironment,andthisshowsintheallocatedbudgetforITS.

Inthispaperwearemainlyinterestedintheoptimizationoftrafficflow,thuseffectivelyminimizingaveragetraveling(orwaiting)timesforcars.Acommontoolforanalyzingtrafficisthetrafficsimulator.Inthissectionwewillfirstdescribetwotechniquescommonlyusedtomodeltraffic.Wewillthendescribehowmodelscanbeusedtoobtainreal-timetrafficinformationorpredicttrafficconditions.Afterwardswedescribehowinformationcanbecommunicatedasameansofcontrollingtraffic,andwhattheeffectofthiscommunicationontrafficconditionswillbe.Finally,wedescriberesearchinwhichallcarsarecontrolledusingcomputers.

2.1ModellingTraffic.

Trafficdynamicsbareresemblancewith,forexample,thedynamicsoffluidsandthoseofsandinapipe.Differentapproachestomodellingtrafficflowcanbeusedtoexplainphenomenaspecifictotraffic,likethespontaneousformationoftrafficjams.Therearetwocommonapproachesformodellingtraffic;macroscopicandmicroscopicmodels.

2.1.1Macroscopicmodels.

Macroscopictrafficmodelsarebasedongas-kineticmodelsanduseequationsrelatingtrafficdensitytovelocity[LighthillandWhitham,1955,Helbingetal.,2002].Theseequationscanbeextendedwithtermsforbuild-upandrelaxationofpressuretoaccountforphenomenalikestop-and-gotrafficandspontaneouscongestions[Helbingetal.,2002,JinandZhang,2003,BrouckeandVaraiya,1996].Althoughmacroscopicmodelscanbetunedtosimulatecertaindriverbehaviors,theydonotofferadirect,flexible,wayofmodellingandoptimizingthem,makingthemlesssuitedforourresearch.

2.1.2Microscopicmodels.

Incontrasttomacroscopicmodels,microscopictrafficmodelsofferawayofsimulatingvariousdriverbehaviors.Amicroscopicmodelconsistsofaninfrastructurethatisoccupiedbyasetofvehicles.Eachvehicleinteractswithitsenvironmentaccordingtoitsownrules.Dependingontheserules,differentkindsofbehavioremergewhengroupsofvehiclesinteract.

CellularAutomata.Onespecificwayofdesigningandsimulating(simple)drivingrulesofcarsonaninfrastructure,isbyusingcellularautomata(CA).CAusediscretepartiallyconnectedcellsthatcanbeinaspecificstate.Forexample,aroad-cellcancontainacarorisempty.Localtransitionrulesdeterminethedynamicsofthesystemandevensimplerulescanleadtochaoticdynamics.NagelandSchreckenberg(1992)describeaCAmodelfortrafficsimulation.Ateachdiscretetime-step,vehiclesincreasetheirspeedbyacertainamountuntiltheyreachtheirmaximumvelocity.Incaseofaslowermovingvehicleahead,thespeedwillbedecreasedtoavoidcollision.Somerandomnessisintroducedbyaddingforeachvehicleasmallchanceofslowingdown.ExperimentsshowedrealisticbehaviorofthisCAmodelonasingleroadwithemergingbehaviorsliketheformationofstart-stopwaveswhentrafficdensityincreases.

CognitiveMulti-AgentSystems.AmoreadvancedapproachtotrafficsimulationandoptimizationistheCognitiveMulti-AgentSystemapproach(CMAS),inwhichagentsinteractandcommunicatewitheachotherandtheinfrastructure.Acognitiveagentisanentitythatautonomouslytriestoreachsomegoalstateusingminimaleffort.Itreceivesinformationfromtheenvironmentusingitssensors,believescertainthingsaboutitsenvironment,andusesthesebeliefsandinputstoselectanaction.Becauseeachagentisasingleentity,itcanoptimize(e.g.,byusinglearningcapabilities)itswayofselectingactions.Furthermore,usingheterogeneousmulti-agentsystems,differentagentscanhavedifferentsensors,goals,behaviors,andlearningcapabilities,thusallowingustoexperimentwithaverywiderangeof(microscopic)trafficmodels.

Dia(2002)usedaCMASbasedonastudyofrealdriverstomodelthedrivers’responsetotravelinformation.Inasurveytakenatacongestedcorridor,factorsinfluencingthechoiceofrouteanddeparturetimewerestudied.Theresultswereusedtomodeladriverpopulation,wheredriversrespondtopresentedtravelinformationdifferently.Usingthispopulation,theeffectofdifferentinformationsystemsontheareawherethesurveywastakencouldbesimulated.Theresearchseemspromising,thoughnoresultswerepresented.

Atrafficpredictionmodelthathasbeenappliedtoareal-lifesituation,isdescribedin[WahleandSchreckenberg,2001].Themodelisam

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 法学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1