pcb布局布线技巧经验大汇总.docx

上传人:b****7 文档编号:25703514 上传时间:2023-06-11 格式:DOCX 页数:21 大小:34.17KB
下载 相关 举报
pcb布局布线技巧经验大汇总.docx_第1页
第1页 / 共21页
pcb布局布线技巧经验大汇总.docx_第2页
第2页 / 共21页
pcb布局布线技巧经验大汇总.docx_第3页
第3页 / 共21页
pcb布局布线技巧经验大汇总.docx_第4页
第4页 / 共21页
pcb布局布线技巧经验大汇总.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

pcb布局布线技巧经验大汇总.docx

《pcb布局布线技巧经验大汇总.docx》由会员分享,可在线阅读,更多相关《pcb布局布线技巧经验大汇总.docx(21页珍藏版)》请在冰豆网上搜索。

pcb布局布线技巧经验大汇总.docx

pcb布局布线技巧经验大汇总

PCB电路板布局、布线基本原则

一、元件布局基本规则

1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;

2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm

(对于M2.5)、4mm(对于M3内不得贴装元器件;

3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;

4.元器件的外侧距板边的距离为5mm;

5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;

6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;

7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;

8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插

拔;

9.其它元器件的布置:

所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;

10.板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);

11.贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;

12.贴片单边对齐,字符方向一致,封装方向一致;

13.有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则

1画定布线区域距PCB板边w1mm的区域内,以及安装孔周围1mm内,禁止布线;

2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;

3、正常过孔不低于30mil;

4、双列直插:

焊盘60mil,孔径40mil;

1/4W电阻:

51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;

无极电容:

51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;

5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线

PCB板布线技巧

在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。

PCB布线有单面布线、

双面布线及多层布线。

布线的方式也有两种:

自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。

必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。

自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次

数、导通孔的数目、步进的数目等。

一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。

并试着重新再布线,以改进总体效果。

对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,

为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线

通道使布线过程完成得更加方便,更加流畅,更为完善,PCB板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中

的真谛。

1电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的

干扰,会使产品的性能下降,有时甚至影响到产品的成功率。

所以对电、地线的布线要认

真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。

对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:

众所周知的是在电源、地线之间加上去耦电容。

尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:

地线〉电源线>信

号线,通常信号线宽为:

0.2〜0.3mm,最经细宽度可达0.05〜0.07mm,电源线为1.2〜2.5mm

对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地不能这样使用)

用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。

或是做成多层板,电源,地线各占用一层。

2数字电路与模拟电路的共地处理

现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路

混合构成的。

因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。

数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进

行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCE与外界连接的接口处(如插头等)。

数字地与模拟地有一点短接,请注意,只有

一个连接点。

也有在PCE上不共地的,这由系统设计来决定。

3信号线布在电(地)层上

在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。

首先应考虑用电源层,其次才是地层。

因为最好是保留地层的完整性。

4大面积导体中连接腿的处理

在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些

不良隐患如:

①焊接需要大功率加热器。

②容易造成虚焊点。

所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heatshield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。

多层板的接电(地)层腿的处理相同。

5布线中网络系统的作用

在许多CAD系统中,布线是依据网络系统决定的。

网格过密,通路虽然有所增加,但步

进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机

类电子产品的运算速度有极大的影响。

而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。

网格过疏,通路太少对布通率的影响极大。

所以要有一个疏

密合理的网格系统来支持布线的进行。

标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54mm)或小于0.1英寸的整倍数,如:

0.05英寸、0.025英寸、0.02英寸等。

6设计规则检查(DRC)

布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:

线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。

电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?

在PCB中是否还有能让地线加宽的地方。

对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。

模拟电路和数字电路部分,是否有各自独立的地线。

后加在PCB中的图形(如图标、注标)是否会造成信号短路。

对一些不理想的线形进行修改。

在PCB上是否加有工艺线?

阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标

志是否压在器件焊盘上,以免影响电装质量。

多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。

PCB板布线布局

一.PCB布局原则

首先,要考虑PCB尺寸大小。

PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。

在确定PCB尺寸后•再按结构要素

布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性,按工艺设计规范的要求进行尺寸标注。

最后,根据电路的功能单元,对电路的全部元器件进行布局。

1.布局操作的基本原则

A.位于电路板边缘的元器件,离电路板边缘一般不小于2mm电路板的最佳形状为矩形。

长宽比为3:

2成4:

3。

B.遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布

局.

C.布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.

D.布局应尽量满足以下要求:

总的连线尽可能短,关键信号线最短;高电压、大电流信号与

小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.

E.以每个功能电路的核心元件为中心,围绕它来进行布局。

元器件应均匀、整齐、紧凑地

排列在PCB上•尽量减少和缩短各元器件之间的引线和连接。

F.相同结构电路部分,尽可能采用“对称式”标准布局;同类型插装元器件在X或Y方向

上应朝一个方向放置;同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

2.布局操作技巧

1.元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

2.元件布局时,应适当考虑使用同一种电源的器件尽量放在一起,以便于将来的电源分隔。

3.IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。

4.尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。

易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

5.某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。

带高电压的元器件应尽量布置在调试时手不易触及的地方。

6.重量超过15g的元器件、应当用支架加以固定,然后焊接。

那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。

热敏元件应远离发热元件。

7.对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。

若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应

8.发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。

9.输入输出端用的导线应尽量避免相邻平行。

最好加线间地线,以免发生反馈藕合。

10.BGA与相邻元件的距离>5mm其它贴片元件相互间的距离>0.7mm贴装元件焊盘的外侧

与相邻插装元件的外侧距离大于2mm有压接件的PCB压接的接插件周围5mm内不能有插

装元、器件,在焊接面其周围5mm内也不能有贴装元、器件。

11.需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。

当安装孔需要接地时,应采用分布接地小孔的方式与地平面连接。

12.焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,

阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm

(50mil)的IC、SOJPLCGQFP等有源元件避免用波峰焊焊接。

13.用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置。

串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过500mil。

匹配电阻、电容的布局一定要分清信号的源端与终端,对于多负载的终端匹配一定要在信号的最远端匹配。

3.焊盘

焊盘中心孔要比器件引线直径稍大一些。

焊盘太大易形成虚焊。

焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。

对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

4.印刷电路板中的过孔设计为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到:

1.从成本和信号质量两方面考虑,选择合理尺寸的过孔大小。

比如对6-10层的内存模块

PCB设计来说,选用10/20mil(钻孔/焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使用8/18mil的过孔。

目前技术条件下,很难使用更小尺寸的过孔了。

对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗。

2.上面讨论的两个公式可以得出,使用较薄的PCB板有利于减小过孔的两种寄生参数。

3.PCB板上的信号走线尽量不换层,也就是说尽量不要使用不必要的过孔。

4.电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好,因为它们会导致电感的增加。

同时电源和地的引线要尽可能粗,以减少阻抗

5.在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。

甚至可以在

PCE板上大量放置一些多余的接地过孔。

当然,在设计时还需要灵活多变。

前面讨论的过孔模型是每层均有焊盘的情况,也有的时候,我们可以将某些层的焊盘减小甚至去掉。

特别是在过孔密度非常大的情况下,可能会导致在铺铜层形成一个隔断回路的断槽,解决这样的问题除了移动过孔的位置,我们还可以考虑将过孔在该铺铜层的焊盘尺寸减小。

附录焊盘、线、过孔的间距要求

PADandVIA>0.3mm(12mil)

PADandPAD>0.3mm(12mil)

PADandTRACK:

>0.3mm(12mil)

TRACKandTRACK:

>0.3mm(12mil)

密度较高时:

PADandVIA>0.254mm(10mil)

PADandPAD>0.254mm(10mil)

PADandTRACK:

>0.254mm(10mil)

TRACKandTRACK:

>0.254mm(10mil)二.PCB布线技巧

布线是整个PCB设计中最重要的工序。

这将直接影响着PCB板的性能好坏。

在PCB的设计过程中,布线一般有这么三种境界的划分:

首先是布通,这时PCB设计时的最基本的要求。

果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。

其次是电器性能的满足。

这是衡量一块印刷电路板是否合格的标准。

这是在布通之后,认真调整布线,使其能达到最佳的电器性能。

接着是美观。

假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。

这样给测试和维修带来极大的不便。

布线要整齐划一,不

能纵横交错毫无章法。

这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就

是舍本逐末了。

布线时主要按以下原则进行:

1.一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。

在条

件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:

地线

>电源线〉信号线,通常信号线宽为:

0.2〜0.3mm,最细宽度可达0.05〜0.07mm,电源线

一般为1.2〜2.5mm。

对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来

使用(模拟电路的地则不能这样使用)。

引脚的钻孔直径=引脚直径+(10~30mil)引脚的焊盘直径=钻孔直径+18mil

2.预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。

必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。

3.振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。

时钟振荡电路下面、

特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;

4.尽可能采用450的折线布线,不可使用90。

折线,以减小高频信号的辐射;(要

求高的线还要用双弧线)

5.任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽

量少;

6.关键的线尽量短而粗,并在两边加上保护地。

7.通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方

式引出。

8.关键信号应预留测试点,以方便生产和维修检测用

9.原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC^查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。

或是做成多层板,电源,地线各占用一层。

有些问题虽然发生在后期制作中,但却是PCB设计中带来的,它们是:

过线孔太多,沉铜工艺稍有不慎就会埋下隐患。

所以,设计中应尽量减少过线孔。

同向并行

的线条密度太大,焊接时很容易连成一片。

所以,线密度应视焊接工艺的水平来确定。

焊点的距离太小,不利于人工焊接,只能以降低工效来解决焊接质量。

否则将留下隐患。

所以,焊点的最小距离的确定应综合考虑焊接人员的素质和工效。

焊盘或过线孔尺寸太小,或焊盘尺寸与钻孔尺寸配合不当。

前者对人工钻孔不利,后者对数控钻孔不利。

容易将焊盘钻成“c”形,重则钻掉焊盘。

导线太细,而大面积的未布线区又没有设置敷铜,容易造成腐蚀不均匀。

即当未布线区腐蚀完后,细导线很有可能腐蚀过头,或似断非断,或完全断。

所以,设置敷铜的作用不仅仅是增大地线面积和抗干扰。

以上诸多因素都会对电路板的质量和将来产品的可靠性大打折扣。

附:

专家关于高速线路的布线问题解答

1。

问:

在实际布线中,很多理论是相互冲突的;

1。

处理多个模/数地的接法:

理论上是应该相互隔离的,但在实际的小型化、高密度布线中,

由于空间的局限或者绝对的隔离会导致小信号模拟地走线过长,很难实现理论的接法。

我的

做法是:

将模/数功能模块的地分割成一个完整的孤岛,该功能模块的模/数地都连接在这一个孤岛上。

再通过沟道让孤岛和“大”地连接。

不知这种做法是否正确?

2。

理论上晶振与CPU的连线应该尽量短,由于结构布局的原因,晶振与CPU的连线比较长、比较细,因此受到了干扰,工作不稳定,这时如何从布线解决这个问题?

诸如此类的问题还有很多,尤其是高速PCB布线中考虑EMCEMI问题,有很多冲突,很是头痛,请问如何解决这些冲突?

答:

1.基本上,将模/数地分割隔离是对的。

要注意的是信号走线尽量不要跨过有分割的地方(moat),还有不要让电源和信号的回流电流路径(returningcurrentpath)变太大。

2.晶振是模拟的正反馈振荡电路,要有稳定的振荡信号,必须满足loopgain与phase的规范,而这模拟信号的振荡规范很容易受到干扰,即使加groundguardtraces可能也无法完全隔离干扰。

而且离的太远,地平面上的噪声也会影响正反馈振荡电路。

所以,一定要将晶振和芯片的距离进可能靠近。

3.确实高速布线与EMI的要求有很多冲突。

但基本原则是因EMI所加的电阻电容或ferritebead,不能造成信号的一些电气特性不符合规范。

所以,最好先用安排走线和PCB叠层的技巧来解决或减少EMI的问题,如高速信号走内层。

最后才用电阻电容或ferritebead的方式,以降低对信号的伤害。

2。

在高速设计中,如何解决信号的完整性问题?

差分布线方式是如何实现的?

对于只有一个输出端的时钟信号线,如何实现差分布线?

答:

信号完整性基本上是阻抗匹配的问题。

而影响阻抗匹配的因素有信号源的架构和输出阻

抗(outputimpedanee),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。

解决的方式是靠端接(termination)与调整走线的拓朴。

差分对的布线有两点要注意,一是两条线的长度要尽量一样长,另一是两线的间距(此间距由差分阻抗决定)要一直保持不变,也就是要保持平行。

平行的方式有两种,一为两条线走在同一走线层(side-by-side),一为两条线走在上下相邻两层(over-under)。

一般以前者side-by-side实现的方式较多。

要用差分布线一定是信号源和接收端也都是差分信号才有意义。

所以对只有一个输出端的时钟信号是无法使用差分布线的。

3。

关于高速差分信号布线

问:

在pcb上靠近平行走高速差分信号线对的时候,在阻抗匹配的情况下,由于两线的相互耦合,会带来很多好处。

但是有观点认为这样会增大信号的衰减,影响传输距离。

是不是这样,为什么?

我在一些大公司的评估板上看到高速布线有的尽量靠近且平行,而有的却有意的使两线距离忽远忽近,我不懂那一种效果更好。

我的信号1GHz以上,阻抗为50欧姆。

用软件计算时,差分线对也是以50欧姆来计算吗?

还是以100欧姆来算?

接收端差分线对之间可否加一匹配电阻?

答:

会使高频信号能量衰减的原因一是导体本身的电阻特性(conductorloss),包括集肤效应(skineffect),另一是介电物质的dielectricloss。

这两种因子在电磁理论分析传输线效应(transmissionlineeffect)时,可看出他们对信号衰减的影响程度。

差分线的耦

合是会影响各自的特性阻抗,变的较小,根据分压原理(voltagedivider)这会使信号源送到线上的电压小一点。

至于,因耦合而使信号衰减的理论分析我并没有看过,所以我无法评论。

对差分对的布线方式应该要适当的靠近且平行。

所谓适当的靠近是因为这间距会影

响到差分阻抗(differentialimpedance)的值,此值是设计差分对的重要参数。

需要平行也是因为要保持差分阻抗的一致性。

若两线忽远忽近,差分阻抗就会不一致,就会影响信号完整性(signalintegrity)及时间延迟(timingdelay)。

差分阻抗的计算是2(Z11-Z12),其中,Z11是走线本身的特性阻抗,Z12是两条差分线间因为耦合而产生的阻抗,与线距有关。

所以,要设计差分阻抗为100欧姆时,走线本身的特性阻抗一定要稍大于50欧姆。

至于要大多少,可用仿真软件算出来。

4。

问:

要提高抗干扰性,除了模拟地和数字地分开只在电源一点连接,加粗地线和电源线外,希望专家给一些好的意见和建议!

答:

除了地要分开隔离外,也要注意模拟电路部分的电源,如果跟数字电路共享电源,最好要加滤波线路。

另外,数字信号和模拟信号不要有交错,不要跨过分割地的地方(moat)。

5。

关于高速PCB设计中信号层空白区域敷铜接地问题

问:

在高速PCB设计中,信号层的空白

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 纺织轻工业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1