供热课程设计说明书要点.docx

上传人:b****9 文档编号:25683081 上传时间:2023-06-11 格式:DOCX 页数:20 大小:60.61KB
下载 相关 举报
供热课程设计说明书要点.docx_第1页
第1页 / 共20页
供热课程设计说明书要点.docx_第2页
第2页 / 共20页
供热课程设计说明书要点.docx_第3页
第3页 / 共20页
供热课程设计说明书要点.docx_第4页
第4页 / 共20页
供热课程设计说明书要点.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

供热课程设计说明书要点.docx

《供热课程设计说明书要点.docx》由会员分享,可在线阅读,更多相关《供热课程设计说明书要点.docx(20页珍藏版)》请在冰豆网上搜索。

供热课程设计说明书要点.docx

供热课程设计说明书要点

摘要

本次课程设计是选择在天津市嘉华有限公司办公楼供暖设计。

根据当地的气象资料,计算出各个房间的热负荷和冷风渗透负荷,选择散热器类型,根据房间平面图,确定散热器的片数。

选择一个较适宜的热水供暖系统方式(上供下回),并进行水力计算。

关键词:

热负荷、水力计算、供暖。

 

附录20

第1章工程概况

本课程的目的是培养学生运用所学的暖通空调、流体输配管网课程的理论和技术知识解决实际问题,进一步提高运算、制图和使用资料的能力。

通过设计,了解室内采暖系统的设计内容、程序和基本原则,巩固所学理论知识,培养利用这些知识解决实际问题的能力,逐步树立正确的设计观点。

采暖课程设计是建筑环境与设备专业培养学生解决实际问题能力的一个重要的教学实践环节,在建筑环境与设备专业的教学计划中占有重要的地位和作用。

1.1工程概述

1.本工程为上海市巨力电子科技有限公司办公楼采暖设计,整个建筑物全为地上5层,建筑面积约2146m2,建筑占地面积约430m2,建筑总高约21m。

一层为自行车库,层高均为2.7m,二层到五层主要是办公室,每层都带有洗手间。

热源由城市热网提供,供回水温度为:

95℃、70℃,引入口管径为DN50,供回水压差为20000Pa。

1.2设计任务

本设计为整栋办公楼冬季热水供暖工程。

设计主要内容为:

(一)设计准备(收集和熟悉有关规范、标准并确定室内外设计参数)

(二)采暖设计热负荷及热指标的计算

(三)散热设备选择计算

(四)布置管道和附属设备选择,绘制设计草图

(五)管道水力计算

(六)平面布置图、系统原理图等绘制

(七)设备材料表、设计及施工说明的编制

1.3设计参数

本次设计任务为上海市巨力电子科技有限公司办公楼冬季采暖系统设计。

采暖日期为12月18日~1月28日,共40天。

本采暖设计,已经给出热媒,并由城市热网提供。

故本设计不做热力系统机房和室外管网等的设计。

1.3.1室外设计参数

该办公楼所在的地区是上海市,查得,上海市冬季室外气象参数列在下表1.1中:

表1.1上海市冬季室外气象参数

地名

台站位置

大气压力(hPa)

冬季室外计算干球温度(℃)

室外风速

(m/s)

室外相对湿度(%)

北纬

东经

海拔(m)

冬季

采暖

冬季空调

冬季通风

冬季平均

冬季空调

上海

31°24´

121°27´

5.5

1026.5

1.2

-2

3.5

3.3

74

1.3.2室内设计参数

根据设计建筑类型,查表附录[1],确定室内设计参数如下表:

表1.2室内设计参数

室内计算温度

室内温度(℃)

1

门厅、楼(电)梯

16

2

办公室

20

3

会议、接待室

18

4

多功能厅

18

5

走道、洗手间、公共食堂

16

6

车库

5

1.4设计原始资料

1.4.1土建资料

本工程为上海市巨力电子科技有限公司办公楼采暖设计,整个建筑物为全地上5层。

建筑面积约2146m2,建筑占地面积约430m2,建筑总高21m。

层高为3.6m。

一层为自行车库,二层至五层主要是办公室,每层都带有洗手间,且有东侧及中间两个楼梯间

1.4.2动力与能源资料

1.热源:

城市热网

2.热媒:

热水参数tg=95℃th=70℃

3.热力入口位置:

系统与室外管网连接,其引入口处供回水压差P=20000Pa(详见图纸标示)

1.5其他资料

1.人数:

按照相关设计手册确定。

2.照明、设备:

按照相关设计手册确定。

3.采暖设备要求

散热器要求散热性能好,金属热强度大,承压能力高,价格便宜,经久耐用,使用寿命长。

该设计中采暖设备选用散热器供暖。

对散热器的要求主要有以下几点:

1)热工性能方面的要求,散热器的传热系数值越高,说明其散热性能越好。

提高散热器的散热量,增大散热器传热系数的方法,可以采用增加外壁散热面积(在外壁上加肋片)、提高散热器周围空气的流动速度和增加散热器向外辐射强度等途径。

2)经济方面的要求,散热器传给房间的单位热量所需金属耗量越少,成本越低越好。

3)安装使用和工艺方面的要求,散热器应具有一定机械强度和承压能力;散热器的结构形式应便于组合成所需要的散热面积,结构尺寸要小,少占房间面积和空间,散热器的生产工艺应满足大批量生产的要求。

4)卫生美观方面的要求,散热器要外表光滑,不积灰和易于清扫,散热器的装设不应影响房间的观感。

5)使用寿命的要求,散热器应不易被腐蚀和破损,使用年限长。

1.6朝向修正率

北、东北、西北朝向:

0~10%;

东、西朝向:

-5%;

东南、西南朝向:

-10%~-15%

南向:

-15%~-30%

第2章负荷计算

 

供暖热负荷是设计中最基本的数据。

它直接影响供暖系统方案的选择、供暖管道管径和散热器等设备的确定、关系到供暖系统的使用和经济效果。

2.1热负荷组成

1、基本耗热量(屋顶、墙、地板和窗耗热量);

2、围护结构修正耗热量(朝向、风力、高度影响的修正);

3、冷风渗透耗热量;

4、冷风侵入耗热量;

2.2负荷计算

2.2.1主要计算公式

由于冬季室外温度的波动幅度远小于室内外的温差,因此在围护结构的基本耗热量计算中采用日平均温差的稳态计算法,

1.围护结构的基本耗热量

(2-1)

式中Q——围护结构的基本耗热量形成的热负荷(W);

a——围护结构的温差修正系数;

——围护结构面积(㎡);

——围护结构的传热系数[W/(㎡·℃)];

——冬季采暖室内计算温度(℃);

——冬季采暖室外计算温度(℃)。

2.围护结构的附加耗热量

围护结构的附加耗热量按其占基本耗热量的百分率确定。

1)朝向修正率参考本设计1.6节;

2)风力附加率本设计不必要考虑风力附加;

3)围护结构的高度附加本设计中高度附加可以忽略。

3.冷风渗透耗热量

(2-2)

式中:

——冷风渗透耗热量(W);

L——经门、窗隙入室内的总空气量,m3/h;

——供暖室外计算温度下的空气密度,本设计取1.415kg/m3;

——冷空气的定压比热,

=1KJ/(kg·℃)。

2.2.2计算范例

在此选择一个具有典型代表意义的房间的计算过程作为范例,选取二层201办公室,计算过程如下:

围护结构传热系数(单位:

W/m2·℃):

外墙:

0.5

玻璃窗:

2.4

地面:

0.35

屋面:

0.83

由于冬季室外温度的波动幅度远小于室内外的温差,因此在围护结构的基本耗热量计算中采用日平均温差的稳态计算法。

围护结构的基本耗热量:

(2-3)

式中:

——围护结构的基本耗热量形成的热负荷(W);

α——围护结构的温差修正系数

F——围护结构的面积(m2)

——围护结构的传热系数[W/(㎡·℃)];

——冬季采暖室内计算温度(℃);

——冬季采暖室外计算温度(℃)

围护结构的附加耗热量:

围护结构的附加耗热量按其占基本耗热量的百分率确定。

朝向修正率参考本设计1.6节;

风力附加率本设计不必考虑风力附加;

围护结构的高度附加本设计高度附加可以忽略;

冷风渗透耗热量

(2-2)

式中:

——冷风渗透耗热量(W);

L——经门、窗隙入室内的总空气量,m3/h;

——供暖室外计算温度下的空气密度,本设计取1.415kg/m3;

——冷空气的定压比热,

=1KJ/(kg·℃)。

二层201办公室位置如下图:

图1-1201办公室平面图

计算:

西外墙:

F=a×b=8.3×3.6=29.88m2

其负荷为:

29.88×0.5×20×1=298.8W

东南外墙:

F=a×b=4.6×3.6=16.56m2

其负荷为:

16.56×0.5×20×1=165.6W

南外墙:

F=a×b=1.8×3.6=6.48m2

其负荷为:

6.48×0.5×20×1=64.8W

南外窗:

F=a×b=1.8×3.6=6.48m2

其负荷为:

6.48×2.4×20×1=311.04W

地面1:

F=a×b=7.2×5.4=38.88m2

其负荷为:

38.88×0.35×20×1=272.16W

地面2:

F=a×b=1.8×2.9=5.22m2

其负荷为:

5.22×0.35×20×1=36.54W

此外,其冷风渗透负荷为:

0.278×0.5×158.76×1.3238×20=584.26W

所以该办公室的总负荷为:

1645.33W

2.3负荷计算汇总

2.3.1二层负荷计算如下表2.1

表2.1二层负荷计算汇总

房间号

201

202

203

204

负荷/W

1645.33

1426.19

713.10

3784.61

2.3.2三层负荷计算如下表2.2

表2.2三层负荷计算汇总

房间号

301

302

303

304

305

306

负荷/W

1336.63

1154.03

577.02

577.02

1154.03

1336.63

2.3.3四层负荷计算如下表2.3

表2.3四层负荷计算汇总

房间号

401

402

403

404

负荷/W

1336.63

1154.03

1192.41

1560.33

房间号

405

406

407

408

负荷/W

577.02

577.02

1269.44

1017.16

2.3.4五层负荷计算如下表2.4

表2.4四层负荷计算汇总

房间号

501

502

503

504

负荷/W

1336.63

577.02

577.02

577.02

房间号

505

506

507

508

负荷/W

367.71

490.28

367.71

577.02

房间号

509

510

511

负荷/W

577.02

577.02

1336.63

2.3.5其他负荷计算如下表2.5

表2.5其他负荷计算汇总

房间号

门厅

过道

楼梯间(东)

楼梯间(中)

负荷/W

4062.90

4363.83

822.44

938.59

房间号

卫生间

负荷/W

903.04

 

第3章热水供暖系统设计方案比较与确定

热水采暖系统形式的选择,应根据建筑物的具体条件,考虑功能可靠、经济,便于管理、维修等因素,采用适当的采暖形式。

3.1循环动力

根据设计资料中给出动力与能源资料为城市热网提供热媒(热水参数tg=95℃,th=70℃)且系统与室外管网连接,其引入口处供回水压差P=20000Pa。

故可确定本设计为机械循环系统。

3.2供、回水方式

供、回水方式可分为单管式和双管式[1]。

双管热水供暖系统:

因供回水支管均可装调节阀,系统调节管理较为方便,故易被人们接受,但双管热水供暖系统由于自然循环压头作用,容易引起垂直失调现象,故多用于四层以下的建筑。

按其供水干管的位置不同,可分为上供下回、中供下回、下供下回、上供上回等系统。

本设计采用上供下回式系统

单管热水供暖系统:

构造简单,节省管材,造价低,而且可减轻垂直失调现象,故五到六层建筑中宜采用单管式采暖系统,不过一个垂直单管采暖系统所连接的层数不宜超过十二层。

层数过多会使立管管径过大,下部水温过低,散热器面积过大不好布置,为了提高下层散热器的水温可设成带闭合管的单管垂直式采暖系统。

本工程为办公楼无需分户热计量,又总建筑为五层,由上述比较及分析可以确定本工程采用单管热水供暖系统。

3.3系统敷设方式

系统敷设方式可分为垂直式和水平式系统[1]。

水平式热水供暖系统:

水平式采暖系统结构管路简单,节省管材,无穿过各层楼板的立管,施工方便,造价低,可按层调节供热量,当设置较多立管有困难的多层建筑式高层建筑时,可采用单管水平串联系统。

但该系统的排气方式较为复杂,水平串联的散热器不宜过多,过多时除后面的水温过低而使散热器片数过多外,管道的膨胀问题处理不好易漏水。

垂直式热水供暖系统:

结构管路简单,节省管材,施工管理方便,造价低,但易造成垂直平失调。

在无需考虑分区问题,目前被广泛采用。

根据上述比较与分析,结合本工程单层散热器较多,房间结构简单,无需考虑分区问题,所以,本工程采用垂直式系统。

3.4供、回水管布置方式

供、回水管布置方式可分为同程式和异程式[1]

异程式系统布置简单、节省管材,但各立管的压力损失难以平衡,会出现严重的水力失调现象。

而同程式系统可消除式减轻水力失调现象,故有条件时宜采用同程式系统。

本设计采用同程式系统。

根据建筑特点,本工程采用环状同程式系统,即在底层设一根总的回水同程管。

3.5工程方案确定

综合上述分析,本工程热水供暖系统采用机械循环、垂直单管、同程上供下回式系统。

第4章散热器的选型及安装形式

4.1散热器的选择

选铸铁四柱760型,高度为760mm它结构简单,耐腐蚀,使用寿命长,造价低,传热系数高;金属热强度大,易消除积灰,外形也比较美观;每片散热器的面积少,易组成所需散热面积。

具体性能及参数见附录10[1],如下表5.1:

表4.1散热器规格及传热系数

型号

散热面积

水容量

重量

工作压力

传热系数K

TZ4-6-5

(四柱760型)

0.235m

/片

1.16L/片

6.6kg/片

0.5MPa

=68.5

8.64w/m

·℃

=66.5

8.56w/m

·℃

=64.5

8.49w/m

·℃

=62.5

8.41w/m

·℃

其中K=2.503

为散热器热水热媒进出口温度的平均值与室内空气温度的差值:

=(95+70)/2-tn

4.2散热器的布置[1]

1.散热器布置一般安装在外墙窗台下,这样沿散热器上升的对流热气能阻止和改善从玻璃下降的冷气流和玻璃冷辐射的影响,使流经室内的空气比较暖和舒适;

2.为防止散热器冻裂,两道外门之间,门不准设置散热器。

在楼梯间或其它有冻结危险的场所,其散热器应由单独的立、支供热,且不得装设调节阀;

3.散热器一般明装或装在深度不超过130mm的墙槽内,布置简单,本设计采用明装;

4.在垂直单管或双管热水供暖系统中,同一房间的两组散热器可以串联连接;贮藏室、厕所和厨房等辅助用室及走廊的散热器,可同邻居串联连接;

5.铸铁散热器的组装片数,不宜超过下列数值:

二柱(M132型)—20片;柱型(四柱)—25片;长翼型—7片。

考虑到传热效果,本设计散热片安装形式为同侧的上进下出。

本设散热器布置见平面图。

散热器片数参见表5.2。

4.3散热器的安装

底部距地面不小于60mm,通常取150mm;顶部距窗台板不小于50mm;背部与墙面净距不小于25mm。

4.4散热器的计算

1、以办公室201为例:

热负荷Q=1645.33W,供水温度为tg=95℃,th=70℃,

=18℃,

=64.5℃

由本设计表4.1,K=8.41w/m

·℃

修正系数:

散热器组装片数修正系数,先假定

=1.0;

散热器连接形式修正系数,查表3-2[1],

=1.0;

散热器安装形式修正系数,查表3-3[1],

=1.02;

根据式(3-3)[1]

F′=

Q/(K·Δt)=1.0×1.0×1.02×1645.33/(8.41×64.5)=3.06

(4-1)四柱760型散热器每片散热面积为0.235m2,计算片数n′为:

n′=F′/f=3.06/0.235=13.04<25

所以该散热器片数为13片。

2、其他房间的散热器计算结果列于附录2中。

 

第5章热水供暖系统水力计算

根据设计资料热力接口位置及设计方案,本设计热水供暖系统为单管垂直式系统。

5.1确定系统原理图

根据以上分析,可画出系统图,该系统没有支路。

本设计以右边立管L2环路计算为例,因该环路为最不利环路。

图上不带字母的数字表示管段号,散热器内的数字表示其片数。

圆圈里既带字母又带数字的表示立管编号。

5.2系统水力计算

设计供回水温度为95/70℃。

对室内热水供暖系统管路,管壁的当量绝对粗糙度K值取0.2mm,当K=0.2mm时,过渡区的临界速度为

=0.023m/s,

=1.066m/s。

本设计热水供暖系统中,管段中的流速通常都在

之间。

5.2.1选择最不利环路

最不利环路是通过立管L2的的环路。

这个环路经过管段1、2、3、4、5、6、7、8、9、10、11、12、13、14、15。

5.2.2最不利环路的作用压力

根据已给条件:

ΔP=20KPa

5.2.3确定最不利环路各管段的管径

(1)求单位长度平均比摩尔阻

根据式

Rpj=αΔP/ι(5-1)

式中∑ι——最不利循环环路或分支环路的总长度,m;

α——沿程损失占总压力损失的估计百分数;查规范得α=50%。

ι=117.6m

Rpj=αΔP/∑ι=0.5×20000/117.6=85.03Pa

(2)根据各管段的热负荷,求出各管段的流量,计算公式如下:

G=3600Q/4.187×103(tg'-th')=0.86Q/(tg'-th')kg/h(5-2)

式中Q—管段的热负荷,W;

tg'—系统的设计供水温度,℃;

th'—系统的设计回水温度,℃。

(3)根据G,Rpj,查中附录13[1],选择最接近Rpj的管径。

将查出的d、R、和v值列入下表5.1。

表5.1分支1立管9供回水立管水力计算表

立管总阻力(Pa)

2293

本分支最不利环路

编号

Q(W)

G(kg/h)

L(m)

D(mm)

υ(m/s)

R(Pa/m)

Σξ

ΔPy(Pa)

ΔPj(Pa)

ΔP(Pa)

VG1

9745

335.23

2

20

0.27

67.97

1.5

136

53

189

VG2

9745

335.23

3.2

20

0.27

67.97

0

218

0

218

VG3

9745

335.23

3.2

20

0.27

67.97

0

218

0

218

VG4

9745

335.23

3.2

20

0.27

67.97

0

218

0

218

VH1

9745

335.23

4.7

20

0.27

67.97

1.5

319

53

373

R1

2182

335.23

3

20

0.27

67.97

3

204

107

311

R1

2182

228.65

3

20

0.18

32.73

9

98

149

247

R2

1017

106.59

3

15

0.16

35.92

9

108

107

215

R1

2182

335.23

3

20

0.27

67.97

3

204

107

311

表5.2分支1立管2供回水立管水力计算表

编号

Q(W)

G(kg/h)

L(m)

D(mm)

υ(m/s)

R(Pa/m)

Σξ

ΔPy(Pa)

ΔPj(Pa)

ΔP(Pa)

VG1

3612

124.26

2

15

0.18

48

1.5

96

24

120

VG2

3612

124.26

3.2

15

0.18

48

0

154

0

154

VG3

3612

124.26

3.2

15

0.18

48

0

154

0

154

VG4

3612

124.26

3.2

15

0.18

48

0

154

0

154

VH1

3612

124.26

4.7

15

0.18

48

1.5

226

24

250

R1

903

124.26

3

15

0.18

48

3

144

49

193

R1

903

124.26

3

15

0.18

48

3

144

49

193

R1

903

124.26

3

15

0.18

48

3

144

49

193

R1

903

124.26

3

15

0.18

48

3

144

49

193

表5.3分支1立管1供回水立管水力计算表

编号

Q(W)

G(kg/h)

L(m)

D(mm)

υ(m/s)

R(Pa/m)

Σξ

ΔPy(Pa)

ΔPj(Pa)

ΔP(Pa)

VG1

8728

300.24

2

20

0.24

55.02

1.5

110

43

153

VG2

8728

300.24

3.2

20

0.24

55.02

0

176

0

176

VG3

8728

300.24

3.2

20

0.24

55.02

0

176

0

176

VG4

8728

300.24

3.2

20

0.24

55.02

0

176

0

176

VH1

8728

300.24

4.7

20

0.24

55.02

1.5

259

43

301

R1

2182

300.24

3

20

0.24

55.02

3

165

85

251

R1

2182

300.24

3

20

0.24

55.02

3

165

85

251

R2

2182

300.24

3

20

0.24

55.02

3

165

85

251

R1

2182

300.24

3

20

0.24

55.02

3

165

85

251

(4)最近环路和最远环路平衡计算

最近环路总压力损失为:

1984Pa

最远环路总压力损失为:

2293Pa

不平衡率:

(2293-1984)/2293=13.5%

其余立管水力计算见附录2

 

参考文献

1.王宇清,刘春泽.供热工程,机械工业出版社,2005

2.采暖通风与空气调节设计规范(GB50019—2003),北京:

中国建筑工业出版社,2003

3.刘建龙主编.建筑设备工程制图与CAD技术,北京:

中国化学工业出版社2009

4.刘建龙.供热工程课程设计指导书,2008

5.陆耀庆.供热通风设计手册,北京:

中国建筑工业出版社,1987

6.李贷森.简明供热设计手册,北京:

中国建筑工业出版社,1998

7.城市热力网设计规范CJJ34-2002,北京:

中国建筑工业出版社,2003

8.城市供热管网工程施工及验收规范CJJ-28-89,北京:

中国建筑工业出版社1989

9.采暖通风与空气调节制图标准(GBJ114-1988),北京:

中国建筑工业出版社,1989

设计总结

1、设计优点:

系统

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1