数学建模实验四.docx

上传人:b****7 文档编号:25643019 上传时间:2023-06-11 格式:DOCX 页数:21 大小:208.06KB
下载 相关 举报
数学建模实验四.docx_第1页
第1页 / 共21页
数学建模实验四.docx_第2页
第2页 / 共21页
数学建模实验四.docx_第3页
第3页 / 共21页
数学建模实验四.docx_第4页
第4页 / 共21页
数学建模实验四.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

数学建模实验四.docx

《数学建模实验四.docx》由会员分享,可在线阅读,更多相关《数学建模实验四.docx(21页珍藏版)》请在冰豆网上搜索。

数学建模实验四.docx

数学建模实验四

实验4实验报告

2013326601054夏海浜13信科1班

完成教材(2013高教版)实验;

P136T2

程序:

clear

P1=binopdf(45,100,0.5)

p=binopdf(44,100,0.5);

P2=P1-p

x=0:

100;

P3=binocdf(x,100,0.5);

P4=binopdf(x,100,0.5);

subplot(2,1,1)

plot(x,P4,'*')

title('概率累积')

subplot(2,1,2)

plot(x,P4,'+')

title('概率密度')

图:

运行结果:

P1=

0.0485

P2=

0.0095

 

P140T1

程序:

例1:

clear;

clc;

x=[0.236,0.257,0.258;

0.238,0.253,0.264;

0.248,0.255,0.259;

0.245,0.254,0.267;

0.243,0.261,0.262];

group=[1,1,1,1,1];

p=anova1(x)

图:

p=

1.3431e-05

例2:

clear;

clc;

x=[58.2,56.2,65.3;

52.6,41.2,60.8;

49.1,54.1,51.6;

42.8,50.5,48.4;

60.1,70.9,39.2;

58.3,73.2,40.7;

75.8,58.2,48.7;

71.5,51.0,41.4];

p=anova2(x,2)

p=

0.00350.02600.0001

P145T1

程序:

x1=[3.55.35.14.26.06.85.53.17.24.58.06.56.53.76.27.04.55.95.64.83.9];

x2=[920183113253054725233539217402333273415];

x3=[6.16.47.47.55.96.04.05.88.35.07.67.05.04.05.57.03.54.94.38.05.8];

Y=[11.113.412.913.812.513.013.610.017.612.714.414.714.211.211.416.012.013.512.315.111.7]';

subplot(1,3,1),plot(x1,Y,'*'),title('Y与x1的散点图')

subplot(1,3,2),plot(x2,Y,'+'),title('Y与x2的散点图')

subplot(1,3,3),plot(x3,Y,'o'),title('Y与x3的散点图')

散点图:

b=

6.2914

0.2954

0.1072

0.4450

 

bint=

5.29947.2833

0.12370.4671

0.08720.1271

0.30020.5899

 

r=

0.0953

0.5511

-0.1205

-0.3925

0.4171

-0.6499

0.6883

-0.3243

0.4504

0.1746

-0.1020

-0.3781

-0.4168

-0.2153

0.0792

0.2383

0.3565

-0.2519

-0.4532

0.1862

0.0676

 

rint=

-0.68580.8765

-0.24431.3466

-0.92940.6884

-1.11960.3345

-0.35111.1853

-1.39580.0961

-0.01621.3929

-1.05660.4081

-0.23331.1340

-0.65391.0030

-0.80390.5998

-1.18200.4257

-1.17450.3410

-0.99240.5617

-0.64520.8035

-0.55561.0321

-0.39881.1118

-1.06180.5579

-1.23170.3253

-0.55990.9322

-0.75300.8882

stats=

0.9564124.44530.00000.1624

从两种残差图都可以看到残差的大部分分布在零的附近,因此还是比较好的,去掉4,12,19这三个样本点后残差更加接近原点,重新拟合得到回归模型为

且回归系数的置信区间更小,均不包括原点,统计变量stats包含的三个检验统计量:

相关系数的平方R方,假设检验统计量F,概率P分别为0.9564,124.4453,0.0000,比较可知R,F均增加,说明模型得到改进。

P149T2

程序:

A=[3.5,5.3,5.1,5.8,4.2,6.0,6.8,5.5,3.1,7.2,4.5,4.9,8.0,6.5,6.5,3.7,6.2,7.0,4.0,4.5,5.9,5.6,4.8,3.9;9,20,18,33,31,13,25,30,5,47,25,11,23,35,39,21,7,40,35,23,33,27,34,15;6.1,6.4,7.4,6.7,7.5,5.9,6.0,4.0,5.8,8.3,5.0,6.4,7.6,7.0,5.0,4.0,5.5,7.0,6.0,3.5,4.9,4.3,8.0,5.8]';

Y=[11.113.412.915.613.812.513.013.610.017.612.710.614.414.714.211.211.416.012.712.013.512.315.111.7]';

x1=A(:

1);

x2=A(:

2);

x3=A(:

3);

x4=x1.*x2;

x5=x1.*x3;

x6=x2.*x3;

X=[A,x4,x5,x6];

stepwise(X,Y)

图:

 

T3

程序:

x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477]'

x2=[0.450,0.475,0.485,0.500,0.535,0.545,0.550,0.575]'

x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]'

x4=[0.8922,1.1610,0.5346,0.9589,1.0239,1.0499,1.1065,1.1387]'

x=[x1,x2,x3,x4]

R=corrcoef(x)

[V,D]=eig(R)

 

运行结果:

x1=

1.3760

1.3750

1.3870

1.4010

1.4120

1.4280

1.4450

1.4770

 

x2=

0.4500

0.4750

0.4850

0.5000

0.5350

0.5450

0.5500

0.5750

 

x3=

2.1700

2.5540

2.6760

2.7130

2.8230

3.0880

3.1220

3.2620

 

x4=

0.8922

1.1610

0.5346

0.9589

1.0239

1.0499

1.1065

1.1387

 

x=

1.37600.45002.17000.8922

1.37500.47502.55401.1610

1.38700.48502.67600.5346

1.40100.50002.71300.9589

1.41200.53502.82301.0239

1.42800.54503.08801.0499

1.44500.55003.12201.1065

1.47700.57503.26201.1387

 

R=

1.00000.94830.91190.4613

0.94831.00000.96830.4747

0.91190.96831.00000.4036

0.46130.47470.40361.0000

 

V=

0.54070.1634-0.78540.2531

0.55190.16600.1560-0.8022

0.53800.25340.59680.5387

0.3369-0.93890.05190.0477

 

D=

3.1626000

00.726900

000.08820

0000.0223

P152T1

程序:

x=[1242;

2433;

3344;

4555]

geom=geomean(x)

harm=harmmean(x)

meanX=mean(x)

medianm=median(x)

rangem=range(x)

var1x=var(x,1)

stdX=std(x)

covX=cov(x)

moment1=moment(x,1)

moment2=moment(x,2)

moment3=moment(x,3)

moment4=moment(x,4)

R=corrcoef(x)

运行结果:

x=

1242

2433

3344

4555

 

geom=

2.21343.30983.93603.3098

 

harm=

1.92003.11693.87103.1169

 

meanX=

2.50003.50004.00003.5000

 

medianm=

2.50003.50004.00003.5000

 

rangem=

3323

 

var1x=

1.25001.25000.50001.2500

 

stdX=

1.29101.29100.81651.2910

 

covX=

1.66671.33330.66671.6667

1.33331.66670.33331.3333

0.66670.33330.66670.6667

1.66671.33330.66671.6667

 

moment1=

0000

 

moment2=

1.25001.25000.50001.2500

 

moment3=

0000

 

moment4=

2.56252.56250.50002.5625

 

R=

1.00000.80000.63251.0000

0.80001.00000.31620.8000

0.63250.31621.00000.6325

1.00000.80000.63251.0000

 

T2

X=[12345678910]'*[10987654321]

geom=geomean(x)

harm=harmmean(x)

meanX=mean(x)

medianm=median(x)

rangem=range(x)

var1x=var(x,1)

stdX=std(x)

covX=cov(x)

moment1=moment(x,1)

moment2=moment(x,2)

moment3=moment(x,3)

moment4=moment(x,4)

R=corrcoef(x)

 

X=

10987654321

2018161412108642

30272421181512963

403632282420161284

5045403530252015105

6054484236302418126

7063564942352821147

8072645648403224168

9081726354453627189

100908070605040302010

 

geom=

2.21343.30983.93603.3098

 

harm=

1.92003.11693.87103.1169

 

meanX=

2.50003.50004.00003.5000

 

medianm=

2.50003.50004.00003.5000

 

rangem=

3323

 

var1x=

1.25001.25000.50001.2500

 

stdX=

1.29101.29100.81651.2910

 

covX=

1.66671.33330.66671.6667

1.33331.66670.33331.3333

0.66670.33330.66670.6667

1.66671.33330.66671.6667

 

moment1=

0000

 

moment2=

1.25001.25000.50001.2500

 

moment3=

0000

 

moment4=

2.56252.56250.50002.5625

 

R=

1.00000.80000.63251.0000

0.80001.00000.31620.8000

0.63250.31621.00000.6325

1.00000.80000.63251.0000

P153T3

m=magic(5)

m([17131925])=[NaNNaNNaNNaNNaN]

nan=nansum(m)

min=nansum(m)

max=nanmax(m)

median=nanmedian(m)

std=nanstd(m)

运行结果:

m=

17241815

23571416

46132022

101219213

11182529

 

m=

NaN241815

23NaN71416

46NaN2022

101219NaN3

1118252NaN

 

nan=

4860524456

 

min=

4860524456

 

max=

2324252022

 

median=

10.500015.000013.000011.000015.5000

 

std=

7.95827.746010.95457.74607.9582

P179T1andT2

先建立俩个函数于.m文件中:

functiony=xbar(x)

n=length(x);

y=sum(x);

y=y./n;

functiony=sigma2(x)

Y=x-xbar(x);

Y2=Y.*Y;

n=length(x);

y=sum(Y2);

y=y./n;

T1

>>x=[2.3,4.0,5.4,3.4,4.3,3.4,2.8,4.5,4.3,4.2,3.8,3.7,3.2,3.6,3.5,3.4];

>>mu=xbar(x)

运行结果:

mu=

3.7375

T2

 

>>x=[3.2,3.3,3.4,3.6,3.7,3.8,4.1,4.0,4.2,3.9,3.1,3.0,3.3,3.2,3.2];

>>mu=xbar(x)

mu=

3.5333

运行结果:

>>sig=sigma2(x)

sig=

0.1436

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1