变频器与PLC恒压供水变频器系统的设计.docx

上传人:b****7 文档编号:25461221 上传时间:2023-06-09 格式:DOCX 页数:28 大小:479.47KB
下载 相关 举报
变频器与PLC恒压供水变频器系统的设计.docx_第1页
第1页 / 共28页
变频器与PLC恒压供水变频器系统的设计.docx_第2页
第2页 / 共28页
变频器与PLC恒压供水变频器系统的设计.docx_第3页
第3页 / 共28页
变频器与PLC恒压供水变频器系统的设计.docx_第4页
第4页 / 共28页
变频器与PLC恒压供水变频器系统的设计.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

变频器与PLC恒压供水变频器系统的设计.docx

《变频器与PLC恒压供水变频器系统的设计.docx》由会员分享,可在线阅读,更多相关《变频器与PLC恒压供水变频器系统的设计.docx(28页珍藏版)》请在冰豆网上搜索。

变频器与PLC恒压供水变频器系统的设计.docx

变频器与PLC恒压供水变频器系统的设计

摘要

随着社会的不断发展,工业自动化领域不断走入正规和壮大。

对于人们日常生存等需求日益增加,实现工业自动化与智能化已经迫在眉睫。

其中在城市供水系统中,可以通过可编程控制器(PLC)、变频器控制电机的转速以及PID控制来实现对城市恒压供水。

从上个世纪80年代至90年代中期,PLC领域得到了快速的发展,在这期间,PLC在处理模拟信号、数字信号以及人机交互等方面的发展,促使PLC技术大量应用于工业自动化控制领域。

PLC具有通用性强、使用便捷简单、抗干扰能力强等优点,也使得PLC在工业控制中的地位,在可预见的未来,是无法替代的。

本文是依照西门子三菱PLC为控制系统,来实现对恒压控制系统的手动及自动控制,通过三菱变频器来直接控制三相异步电动机的转速,从而实现恒压输出。

变频器可以接收来自PLC的信号,主要分为手动和自动方式来调节水压。

本文主要针对恒压供水来设计,需要PID控制系统来调节水压,而一些变频器内置了PID功能,这也显示了变频器在工业领域的可实施性。

通过压力设定值与压力变送器返回值进行比较,将偏差反馈给变频器内部的PID调节器,PID调节器经过运算处理,得出调节信号,从而实现闭环控制。

 

关键词:

PLC、变频器、恒压、PID控制

 

第一章绪论

随着社会的迅速发展,工业也逐渐步入了4.0时代,机器人等一些智能化控制也逐渐进入了我们的生活。

恒压供水一直以来是工业以及生活中维持生存的命脉。

为了实现日常生活和工业生产的正常供水,我们必须寻找一种稳定的供水系统来解决昼夜用水量不同以及用户日益增加的问题。

PLC的快速发展发生在上世纪80年代至90年代中期。

在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了很大的提高和发展。

PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。

PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

PID控制是迄今为止最通用的控制方法之一。

因为其可靠性高、算法简单、鲁棒性好,所以被广泛应用于过程控制中,尤其适用于可建立精确数学模型的确定性系统。

PID控制的效果完全取决于其四个参数,即采样周期ts、比例系数Kp、积分系数Ki、微分系数Kd。

因而,PID参数的整定与优化一直是自动控制领域研究的重要课题。

PID在工业过程控制中的应用已有近百年的历史,在此期间虽然有许多控制算法问世,但由于PID算法以它自身的特点,再加上人们在长期使用中积累了丰富经验,使之在工业控制中得到广泛应用。

在PID算法中,针对P、I、D三个参数的整定和优化的问题成为关键问题。

1.1PLC变频调速恒压供水系统的意义

近年来,由于工业迅猛的发展和人们日常物质的需求不断提高,这使得高塔供水系统的水压不稳定,从而影响工业生产和人们日常生活需求。

为了提高供水水压的稳定性和恒速输出,我们可以通过三相异步电动机的转速来控制水压以及水速,三相异步电动机可以通过变频器来调节频率来控制电机的转速,为了实现整个恒压供水控制系统的手动以及自动控制,我们可以通过PLC来控制整个系统。

PLC是基于微型计算机技术的通用工业自动控制设备。

由于PLC体积小、功能强、速度快、可靠性高,又具有较大的灵活性和可扩展性,目前已被应用到机械制造、冶金、化工、交通、电子、纺织、印刷、建筑等诸多领域。

变频器是应用变频技术与微电子技术,通过改变电机工作电源频率的方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、控制单元、驱动单元、检测单元、微处理单元等组成。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等。

随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

通过变频器、PLC以及继电器等元件组成的恒压控制系统具有较高的可靠性,对外界具有较高的抗干扰能力,PLC编程通俗易懂,易于控制,所需成本低等优良特点,使得PLC变频调速恒压供水系统在日常生活用水以及工业生产用水成为可能。

恒压供水系统在无人操作的情况下,可以完成对供水管道的恒压输出,保持供水的恒压输出也就是供水流量的稳定,根据力学原理,水泵的流量与电机的转速成正比。

变频恒压供水系统的基本原理是依照系统中的压力传感器对系统供水管道中的压力进行实时检测,并通过过程控制的原理将压力信号和设定值进行比较,反馈给处理器,通过执行机构变频器,来完成对泵机转速的控制,使得在外界干扰的作用下,水压及水流量能稳定在某一范围内,这就是所谓的恒压控制系统。

其意义可显而易见,保障恒压供水,可以使人们日常生活及工业生产更加方便和稳定。

1.2国内外研究现状及发展

现在社会上,随着计算机的普及以及工业技术的不断完善,使得对供水的恒压控制已经成为可能。

PLC技术的不断发展以及变频器的广泛应用,也使得恒压供水系统可靠性、实用性等性能得到体现。

从查阅的资料来看,国内供水系统发展比较缓慢,最开始是通过高塔供水系统来提供生活及工业生产供水,高塔供水系统最大缺点就是供水水压不稳定,随着社会的不断发展以及工业技术的不断进步,恒压供水系统是在变频器技术不断改善的基础上发展起来的,最先由于国外生产的变频器功能的局限性,在恒压供水控制系统中,变频器仅仅作为执行机构,就是单单接收控制器信号来控制电机的转速。

为了满足供水时的恒压稳定输出,变频器也随之改进,人们在变频器内部囊括了PID控制,通过外部控制器和压力传感器,对压力进行闭环控制。

最初由于变频器技术的不成熟,国外的恒压供水系统在设计时都采用一台变频器控制一台电机的方式,很少使用一台变频器控制多台电机组的形式,这使得整个恒压供水控制系统成本高。

随着变频技术的不断改善,以及PLC技术的巩固,使得变频恒压供水系统的稳定性、可靠性的性能显著提高。

目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。

但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。

变频供水系统目前正在向集成化、维护操作简单化方向发展,在国内外,专门针对供水的变频器集成化越来越高,很多专用供水变频器集成了PLC或PID,甚至将压力传感器也融入变频组件。

同时维护操作也越来越简明显偏高,维护成本也高于国内产品。

目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC或PID调节器实现恒压供水,在小容量、控制要求的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。

目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC),的变频恒压供水系统的水压闭环控制研究得不够。

因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。

1.3本课题主要研究内容

本设计是按照中小城市自来水厂为研究背景,应用变频技术、PLC技术、过程控制技术等,实现对供水系统的恒压控制。

本设计采用三菱PLC和变频器,通过PLC系统的控制和变频器的变频变压,并且利用变频器内置的PID控制器来完成恒压的闭环控制。

本文主要研究内容及结构如下:

1)针对PLC及变频器技术基础展开全文,介绍PLC的发展过程及应用、PLC的基本组成、工作原理等;简单介绍了变频器,包括变频器的基本组成单元、变频器的分类及工作原理。

还简单介绍了PID控制技术。

2)针对供水系统的恒压控制的设计。

本次设计采用选用三菱

~32MR系列的可编程控制器,变频器选用型号为三菱的FR—A540,首先通过介绍了三菱

~32MR的PID控制器引入主题,通过使用PLC的编程控制、变频器的主电路对电机的控制以及变频器内部PID功能模块对供水输出水压的反馈控制,我们仅需使用两者变实现对恒压供水系统的控制。

本章还介绍了供水系统的组成、PLC编程软件等的内容。

第二章PLC和变频器技术基础

PLC是专门应用于工业控制的一种计算机,也就是人们所说的可编程控制器,在工业控制领域,它作为整个系统的控制中心,执行逻辑、顺序、计数、定时等功能,通过模拟量和数字量的输入输出信号,来控制工业生产的正常运行。

2.1可编程控制技术

2.1.1可编程控制器的发展过程及应用

PLC起源于美国,在1969年,美国数设备公司成功研制出第一台可编程控制器PDP-14,由于技术的局限,该产品功能比较简单,但这是首次采用程序化的手段应用于工业控制,因此被世界公认为第一台PLC。

1971年,日本从美国引进了这项技术,很快也研制出本国的第一台PLC,被命名为DSC-18。

1973年西欧国家也相继研发出他们的产品。

我国可编程控制器发展较晚,是从1974开始研制,1977年才应用于工业控制领域。

从20世纪70年代开始,随着电子技术的迅猛发展,PLC采用通讯微处理器的技术逐渐发展成熟,使得PLC控制功能得到进一步的增强。

20世纪80年代,随着集成电路等微电子技术的发展,以16位和32位微处理器构成的微机化PLC,使得PLC功能进一步加强,如工作速度快,抗干扰能力强、可靠性高、成本低、编程及故障检测更加灵活简单等。

目前,PLC已进入成熟阶段,广泛应用于我们的日常生活领域和工业生产领域,如石油、化工、电力、建筑、汽车、环保、水力等各个行业。

2.1.2可编程控制器的组成和工作原理

可编程控制器组成包括CPU控制单元、I/O输入输出单元、内存单元、电源模块、底板或机架。

1.CPU控制单元

CPU控制单元是PLC的核心部分,CPU主要由运算器、控制器、寄存器及实现他们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。

CPU按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。

内存主要用于存储程序及数据,是PLC不可缺少的组成单元。

CPU速度和内存容量是PLC的重要参数,他们决定了PLC的工作速度,I/O输入输出信号点的数量及软件的容量等,因此是PLC控制规模的决定性因素。

2.I/O输入输出模块

PLC输入输出模块是PLC控制系统接收信号和发出信号的模块,也就是与电气回路的接口。

I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。

输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。

I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。

常见的I/O信号的分类有:

开关量信号:

输入输出信号按电压高低分类,有220VAC、110VAC、24VDC,按隔离方式划分,有集体管隔离和继电器隔离两种。

模拟量信号:

按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。

按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数的限制。

我们在设计过程中需要根据输入输出信号点的数量以及信号类型来选择PLC的类型。

3.编程器

编程器的作用是用来供用户进行程序的输入、编辑、调试和监视的。

编程器一般分为简易型和智能型两类。

简易型只能联机编程,且往往需要将梯形图转化为机器语言助记符后才能送入。

而智能型编程器(又称图形编程器),不但可以连机编程,而且还可以脱机编程。

操作方便且功能强大。

4.电源

PLC电源用于为PLC各模块的集成电路提供工作电源。

同时,有的还为输入电路提供24V的工作电源。

电源输入类型有:

交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。

可编程控制器的工作原理:

PLC的工作方式与一般的计算机是不同的,它对I/O状态和用户程序作周期性的循环扫描、解释并加以执行,这一周期称为基本扫描周期,由程序长短和CPU指令执行时间所确定,一般为数十毫秒。

开关控制输出方式可为继电器、晶闸管或晶体管,连续量输出可为电流或电压。

PLC工作的全过程可用图2-1所示的运行框图来表示。

图2-1可编程控制器运行框图

2.1.3可编程控制器的分类及特点

(一)小型PLC

小型PLC的I/O点数一般在128点以下,其特点是体积小、结构紧凑,整个硬件融为一体,除了开关量I/O以外,还可以连接模拟量I/O以及其他各种特殊功能模块。

它能执行包括逻辑运算、计时、计数、算术、运算数据处理和传送通讯联网以及各种应用指令。

(二)中型PLC

中型PLC采用模块化结构,其I/O点数一般在256~1024点之间,I/O的处理方式除了采用一般PLC通用的扫描处理方式外,还能采用直接处理方式即在扫描用户程序的过程中直接读输入刷新输出,它能联接各种特殊功能模块,通讯联网功能更强,指令系统更丰富,内存容量更大,扫描速度更快。

(三)大型PLC

一般I/O点数在1024点以上的称为大型PLC,大型PLC的软硬件功能极强,具有极强的自诊断功能、通讯联网功能强,有各种通讯联网的模块可以构成三级通讯网实现工厂生产管理自动化,大型PLC还可以采用冗余或三CPU构成表决式系统使机器的可靠性更高。

2.2变频器技术

变频器的产生解决了启动电流过大而损耗电机和工作电网不稳等问题,一定程度上它增加了电机的使用寿命,也起到了一定节能的效果。

变频器的产生主要是变频技术和微电子技术发展的产物。

变频器是通过改变电机电源频率的方式来控制电机的速度。

变频器最大特点是可以改变电源的频率,通过改变频率,来实现对交流异步电机的变频调速、软启动、过流保护、过载保护、节能等功能。

2.2.1变频器的组成

变频器通常有四部分组成:

整流单元、高容量电容、逆变器、控制器。

整流单元:

整流单元的主要是通过变流器或者可逆变流器,将工频交流电源转换为直流电源。

高容量电容:

存储转换后的电能。

逆变器:

由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。

控制器:

按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。

2.2.2变频器工作原理

主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:

电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。

电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。

它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。

按照变换环节有无直流环节,变频器可分为交一交变频器和交一直一交变频器。

交一直一交变频器主电路可分三部分:

图2-2交一直一交变频器主电路

1.整流电路:

交一直部分整流电路通常由二极管或是可控硅构成的桥式电路组成。

根据输入电源不同,可以分为单相和三相桥式整流电路。

常用的小型变频器通常为单相220V输入,而较大功率变频器通常为380V三相输入。

2.中间环节:

滤波电路

滤波电路一般可分为电感滤波电路和电容滤波电路。

由于流过电感的电流不能突变,电容两端的电压不能突变,所以用电感滤波就构成电流源型变频器,用电容滤波就构成了电压源型变频器。

3.逆变电路:

直一交部分

逆变电路部分是交一直一交变频器的核心之处,其中6个三极管按其导通顺序分别用VT1~VT6表示,与三极管反向并联的二极管起续流作用。

按每个三极管的导通角度又分为120°导通型和180°导通型两种类型。

逆变电路的输出电压为阶梯波,虽然不是正弦波,却是彼此相差120°的交流电压,即实现了从直流电到交流电的逆变。

输出电压的频率取决于逆变器开关器件的切换频率,达到了变频的目的。

除此之外,逆变电路还有保护半导体元件的缓冲电路,三极管也可以用门极可关断晶闸管代替。

交一交变频器是指无直流中间环节,直接将电网固定频率的恒压恒频交流电源变换成变压变频交流电源的变频器,被人们称为直接变压变频器,也称为周波变频器。

交一交变频器的基本原理如下:

在有源逆变电路中,若才用两组反向并联的可控整流电路,适当控制各组可控硅的关断和导通,就可以在负载上得到电压极性和大小都改变的直流电压。

若再适当控制正反两组可控硅的切换频率,在负载两端就能得到交变的输出电压,从而实现交一交直接变频。

2.3PID控制

在工业电气控制方面,按照控制方式可分为开环控制和闭环控制两种,PID控制是比例积分微分控制的简称,也是闭环控制的一种经典的控制规律。

开环控制方式是指控制装置与被控对象之间,只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称之为开环控制系统,其特点是系统的输出量不会对系统的控制作用发生影响。

开环控制系统可以按给定量控制方式组成,也可以按照扰动控制方式组成。

闭环控制也称为反馈控制,其控制方式是按照偏差进行控制的,其特点是不论什么原因使被控量偏离期望值而出现偏差时,必定会产生一个相应的控制作用去减少或者是消除这个偏差,使被控量与期望值接近相等。

按闭环控制方式组成的闭环控制系统,具有抑制任何内、外扰动对被控量产生影响的能力,有较高的控制控制精度。

闭环控制的基本框图如下:

图2-3闭环控制框图

上图是闭环控制的一个经典的闭环控制系统的框图。

图中用“○”号代表比较元件,它将测量元件检测出的值与输入值进行比较,“—”号代表两者的符号相反,也就是所谓的负反馈;“+”号表示被控量与输入量的符号相同,即正反馈。

信号从输入端经过调节器、执行结构等到达输出端,称为前向通道;系统输出量经过测量元件的测量变送,反馈给输入值,此段通道称之为反馈通道。

通常,闭环控制系统的外作用有两种形式,一种是系统的输入量,另一种为外界的干扰因素,即扰动量。

在正常的工业生产中,扰动是不可避免的,不同的生产环境,扰动的因素也有所不同,而且它可以在整个控制系统的任何元部件进行干扰作用。

也正是因为干扰因素的作用,我们才引入了闭环控制系统。

闭环控制是过程控制的一种类型。

过程控制是通过通过各种检测仪表、控制仪表、电子计算机等自动化技术元件,对整个工艺生产过程进行自动检测自动控制、自动监控。

对于一个过程控制系统来说,是由被控过程及过程检测仪表两部分构成的,过程控制系统主要有调节器、检测元件、调节阀、变送器等构成。

对于过程控制系统的设计经验而讲,主要有两方面,一是工业过程的工艺要求,其次是过程特性,设计时可以根据实际生产需求来选用相应的过程控制仪表,进而创建系统,最后通过PID参数的设定,实现对工业生产过程的最佳控制。

在选择控制器时,我们可根据过程特性来选择,若无法准确的建模或者是过程的数学建模很复杂时,可根据何种控制规律适用于何种过程特性与工艺要求来选择,常用的控制规律有比例控制(P)、比例积分控制(PI)、比例微分控制(PD)、比例积分微分控制(PID)。

1.比例控制规律(P):

采用比例控制规律能较快地克服扰动的影响,使得系统稳定下来,但是存在余差。

它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合。

2.比例积分控制(PI)

在工程设计上,比例积分控制是应用最常见的一种控制方式,其最大的特点是能消除余差,它适用于控制滞后较小、负荷变化不大、被控参数不允许有余差等范畴。

如某些流量、液位等要求无余差的控制系统。

3.比例微分控制(PD)

比例微分控制的特点是具有超前作用,对于具有容量滞后的控制特性,可以使用微分控制规律来改善系统的动态性能指标。

因此对于控制通道的时间常数或是容量滞后较大的场合,为了提高系统的稳定性,减少动态偏差等可选择使用比例微分控制,但是对于纯滞后较大,测量信号有噪声或是周期性扰动的系统,则不宜采用微分控制。

4.比例积分微分控制(PID)

比例积分微分控制是一种较理想的控制规律,它在比例的基础上应用积分的作用,来消除余差,再通过微分的作用,可以提高系统的稳定性。

它适用于控制系统时间常数或是容量滞后较大、控制要求高的现场。

如恒压、恒温的控制等。

PID控制器参数的设定是整个控制系统的核心内容,它决定了整个系统稳定性能,参数设定主要包括PID控制器的比例系数、微分时间和积分时间。

PID控制参数设定方法主要分为两大类:

一是工程设定方法,主要通过工程的积累经验,直接通过在控制系统的调试中进行,由于其通俗易懂、容易掌握,被工程调试广泛应用。

二是通过数学理论设定,它主要是根据数学理论模型,按照一定的数学运算规律来确定控制器的各个参数变量,这种参数计算方法一般不能直接应用到工业调试中,还需要结合现场实际情况进行调整和修改。

现场调试一般使用工程整定的方法来调节参数,主要有临界比例法、衰减法和反应曲线三种方法。

临界比例法是最常见的一种设定方法。

其整定步骤如下:

1)预设定一个足够短的采样周期来让控制系统工作。

2)仅加入比例控制参数进行调节,直到控制系统对输入的阶跃响应出现临界震荡现象,记下纯比例控制的放大系数和临界状态下的震荡周期

3)在一定的控制力度下,使用公式计算得到相应的PID控制器的参数。

第三章恒压控制电路的设计

本次设计是为了实现对供水系统的恒压控制,通过使用PLC和变频器可以完成对恒压供水系统的设计。

通过查阅资料和现场实践,本文选用三菱

~32MR系列的可编程控制器,变频器选用型号为三菱的FR—A540,FR-A540变频器内置PID控制模块。

压力传感器选择没什么特殊的要求,我们在此选用一般的压力表Y-100和XMT-1270数显仪实现压力的显示、检测及传送信号的功能。

采用两台泵机来提供动力,使得系统稳定保障大大提高。

3.1三菱FR-A540变频器的PID功能

三菱变频器在工业应用非常广泛,在设计供/排水系统时选用三菱变频器后常会用到PID控制功能。

目前所有的三菱变频器均有PID控制功能。

FR-A540变频器采用矢量控制方式,使得驱动性能更加好,由于使用了智能功率模块和调制原理,使得变频器的噪声降低、抗干扰性能更高、变频器的输出波形更加稳定。

同时FR-A540内部置入PID控制单元、顺序制动、变频、工频顺序切换、停电减速制动等功能,使得FR-A540变频器得到广泛的应用。

三菱变频器内部PID控制单元,通过对水压的给定值和压力检测装置的输入信号进行对比,将偏差直接传送给内部PID控制单元,按照预先设定的调节规律进行计算,得出调节信号,再直接控制变频器的输出电压和频率,实现对泵机的转速控制,进而保持整个供水系统管道的恒压控制。

控制框图如下:

图3-1PID控制框图

3.2恒压供水系统的设计思路

根据水厂的日常生产来看,工作人员通过操作系统控制面板上的按钮以及指示灯的提示来完成对恒压供水系统的实现。

为了保障整个操作系统的稳定的前提下,必须尽可能的考虑到系统操作简便易懂,安全系数高等因素。

本文通过手动和自动两种运行形式来实现对变频恒压供水系统的控制。

手动运行方式是通过操作面板上的按钮来控制相应的设备,比如各个泵机的运行、停止等。

在水厂正常运行期间,很少使用手动运行方式来控制供水的恒压输出,然而手动方式仍是必不可少的,手动运行方式的作用主要有:

1)方便调试。

在整个系统正处于测试阶段,还未进入生产时,可以通过手动

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1