信息对抗技术专业毕业设计英文翻译说明.docx

上传人:b****9 文档编号:25233075 上传时间:2023-06-06 格式:DOCX 页数:13 大小:809.06KB
下载 相关 举报
信息对抗技术专业毕业设计英文翻译说明.docx_第1页
第1页 / 共13页
信息对抗技术专业毕业设计英文翻译说明.docx_第2页
第2页 / 共13页
信息对抗技术专业毕业设计英文翻译说明.docx_第3页
第3页 / 共13页
信息对抗技术专业毕业设计英文翻译说明.docx_第4页
第4页 / 共13页
信息对抗技术专业毕业设计英文翻译说明.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

信息对抗技术专业毕业设计英文翻译说明.docx

《信息对抗技术专业毕业设计英文翻译说明.docx》由会员分享,可在线阅读,更多相关《信息对抗技术专业毕业设计英文翻译说明.docx(13页珍藏版)》请在冰豆网上搜索。

信息对抗技术专业毕业设计英文翻译说明.docx

信息对抗技术专业毕业设计英文翻译说明

Theultrasonicwavepropagationincompositematerial

anditscharacteristicevaluation

JunjieChang,ChangliangZheng,Qing-QingNi

1.Introduction

FRPcompositematerialswereappliedtovariousfields,suchasaircraftandspacestructures,becauseoftheexcellentcharacteristics,e.g.,light-weight,highratioofrelativeintensityandhighratioofrelativerigidity.DespiteFRPhavingsuchoutstandingcharacteristic,cracksinthematrixandfracturesofthefibermakedebondingsuchkindofdamageeasytooccurbetweenthefiberandthematrix,orthemulti-layers.Thesedamagesaredifficulttobedetecteddirectlybyvisualinspectionfromthesamplesurface,causingtroubletoensurethereliabilityandsafetyofthecompositematerialandstructures.Meanwhile,healthmonitoringtechnologiesofmaterialsareindispensable.Amongthem,theultrasonichealthmonitoringtechnologyattractslotsofattentionsinrecentyears.Simulationsbyfiniteelementmethodhavebeenperformedforthedevelopmentofapparatusforultrasonicdamage-detection,suchasultrasonicpictureinspectionandultrasoniclaser,andfortheverificationoftheirsafetyandvalidity.Researchesandcalculationsonthepropagationanalysisoftheultrasonicwaveinfiberstrengtheningcompositematerialshavebeenwellconductedandreported[1–8].

Onthesolidinterface,twokindsofboundariescanbeconsidered.Oneisliquidcontactinwhichthinlubricantisplaced,andonlypowerandpositionmovementperpendiculartotheinterfacearetransmitted.Theotheroneiscompletesolidcombination,whichpowerandpositionmovementbothperpendiculartoandparalleltotheinterfacearetransmitted.Fiberstrengtheningcompositematerial,theinterfacebetweenthefiberandthematrixcanbeconsideredtobesolidcontact.Inthecaseof,debondingexistingbetweenthematrixandthefiber,fewliteratureswerefound,sincetheconversionsofthetransmittedwavemode,reflectionwavemodeandreflectionpulsephase(waveform)maketheanalysisverycomplicated.Providedthisproblemtobesolved,thequalityofthematerials,tosomeextent,canbeestimatedfromthesoundimpedanceofthereflectorandthetransmissionobject,andtheoptimaldamage-detectionmethodcanbealsoassumedinasimulation.

Inthisresearch,inthesimulationofthetechniquemonitoringthehealthbyanultrasonicwavemethod,theultrasonicwavedistributionpatternwasanalyzedwiththebasictheoryforwavepropagationbyusingthemodelforfiberstrengtheningcompositematerial.Namely,itaimsatobtainingtheamplitudeofthereflectionwaveandtheamplitudeofatransmittedwave,whenthelongitudinalwavehasunitamplitudeincidenceinmodelcompoundmaterial.Inthecaseofanultrasonicwavepropagationinsideamodelmedia,theratesofthereflectivelongitudinal,reflectivetraversewave,transmissionlongitudinalwaveandatransmissiontraversewavegeneratedatageneralincidenceangleintheinterface(afiberandexfoliation)wereanalyzedandreflectivecoefficientandatransmissioncoefficientweregotten,respectively.Visualizedstudiesseparatingintoalongitudinalwaveandatraversewavewerecarriedout,andthemechanismsofalongitudinalwavedistributionandatraverse-wavedistributionwereelucidatedwhentheultrasonicwavepropagatedinsideacompositematerial.

2.Ultrasonicwaveequations

Considerasinglefibercomposite,i.e.,asinglefiberisembeddedinamatrix.TwodimensionsanalysisisconductedasshowninFig.2.Inthiscase,whenanultrasonicwavepropagatesinthissolidmedia,fromHooke’slaw,thestress–strainrelationshipfortwo-dimensionalplanestraininanisotropicmediaiswrittenasfollows[2]:

(1)

(2)

(3)

(4)

WherekandlareLame′constants,andtheTsuperscriptdenotesthetransposition.

Theultrasonicwaveequationsofmotionfortwodimensionalplanestraininanisotropicmediaareasfollows:

(5)

Where,thefirsttermontheleft-handsideofEq.(5)correspondstoalongitudinalwave,andthesecondtermcorrespondstoatransversewave.

isdensity.Ifthelongitudinalwavevelocity

andtransversewavevelocity

areintroducedtheultrasonicwaveequationsofmotionfortwo-dimensionalplanestraincanberewrittenby

(6)

Inthecaseofaplaneadvancingwave,thefollowingformulaisusedtocalculatefortheoscillatingenergygeneratedbytheultrasonicwaveperunittime:

(7)

3.Resultsofanalysisandsimulation

3.1.Transmissionenergyindifferentinterfaceshapes

Whenanincidentverticalwaveisobliquelyirradiated,fourwavesasshowninFig.3,i.e.,reflectedlongitudinalwave,reflectedtransversewave,transmittedlongitudinalwaveandtransmittedtransversewave,wouldappearontheinterface.Inotherwords,theshapeoftheinterfacebetweenepoxyandglassmayinfluencethepropagationoftheultrasonicwave.Forthisreason,themodelwithdifferentinterfaceshapesasshowninFig.1wasusedtoinvestigatetheinfluenceofinterfaceshapeonwavepropagationbehavior.Thevolumefractionproportionofbothmaterialsis1:

1,despiteofthedifferentinterfaceshapesofthethreemodels.Thatistosay,theglass-volume-percentageofallthemodelsis50%.ThepropertiesofeachmediumusedintheanalysisareshowninTable1.Asaboundaryconditionofthemodel,absorptionisconsideredontherightandleftedge,whileitissymmetrical(theroller)ontheupanddowndirection.TheanalyticconditionandtheinputparameterswereshowninTable1.

Fig.2showsthetransmissionenergyoftheultrasonicwavepropagationforthesefourmodelsshowninFig.1.

Fig.1.Fourdifferentinterfaceshapesbetweenepoxyandglass.

Herethetransmissionenergywasdefinedbytheaverageenergyperunitarea,lJ/mm2,atthereceiveredge.Asseen,inModel1,theincidentultrasonicwaveisperpendiculartotheplaneinterface,andtransmittedwaveoccursalongwholeplane,sothatthetransmissionenergyisfarlargerthanthatintheothermodels.Thefull-reflectiontakesplaceinpartofinterfaceinbothModel2andModel3whentheincidenceangleislargerthanthecriticalanglebecausetheultrasonicwaveradiatesobliquelyonaconvexorconcaveinterface.Aboutonethirdoftheincidentwaveexperiencesfull-reflectioninModel2andModel3.However,thetransmissionenergyofModel3islargerthanthatofModel2.AsecondpeakappearsinthetransmissioncurveofModel3.Peak1isareflectedwavethatpropagatesasasecondarywavesourceneartheup-down-wardinterface(intheglassregion),whilepeak2isatransmittedwaveinthecentralpartoftheglassregion.Thereasonmightbethatneartheinterface,arefractiveindexdistributionoccurs,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectionwaves.

Thefull-reflectiontakesplaceininterfaceofModel4(incidenceangleis45_).Allprimaryincidentwaveswerereflected,andtheverysmalltransmissionenergythatshowsasfigureisbecausethedispersionwaveandthereflectedwavepenetratedthepartassecondarywavesourcefromtheverticalneighborhood.

3.2.Influenceofdifferentfiberconditions

Refractiveindexdistributionoccursnearthesecondphaseboundaryduetothesecondphasecompounding,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectioninthecompositematerialsstrengthenedbyfibers.Inthenext,thescatteringoftheultrasonicwaveshowninFig.1willbetakenintoconsideration.Thescattersoccurduetofibersembeddedincompositematerials.Theincidentwave

propagatinginmatrixregion,isasinusoidalwave.Whentheincidentwavereachesthefiber,someistransmittedintothefiber,andtheotherisreflectedonthefiber/matrixinterface,andbecomesasecondarywavesource.Accordingtotheoverlappingprincipleofwavefunctions,thewholewavefunction

canbeexpressedasasumoftheincidentwave

andthescatteredwave

.

(8)

Wherethescatteredwave

includesallthewavesscatteringcomponentsgeneratedduetotheinterfacefromtheknownwave

.

ThemodelfigureofthecompositematerialsfortheinvestigationofthescatterswasdesignedaswhatshowninFig.3,wherethreefiberswithdifferentshapeswereembeddedinthematrix.Thesizeofthemodelwas

.Theboard-shapedglassfiberwiththickness

wasembeddedinthecenterofthematrixofepoxyinModel1,andwasobliquelyembeddedinModel2.Acolumnshapedglassfiberwithadiameter

wasembeddedinthecenterofmatrixinModel3.Theabovethreemodelshadacommonfiberpercentageof20.TheanalyticconditionandtheinputparameterswereshowninTable1.

ForthemodelsinFig.3,whentheincidentwaveontheleft-handsideoftheglassregionarrivedatthefirstinterfacebetweentheepoxyandglass,thetransmittedwaveandthereflectedwavearose.Thenthereflectedwavepropagatedtotheincidenceside,whilethetransmittedwavepropagatedtothereceiversideandarrivedatthesecondinterfaceoftheglassandepoxythroughtheglassregion.

Thesecondtransmittedwaveandthesecondreflectedwavearoseatthesecondinterface,andamultiplexreflectionoccurredintheglassregion.Fortheboard-shapedfiber(planefiber)andthecolumn-shapedfiber(cylindricalfiber),Fig.4showsthecomparisonsoftheanalyticresultsinthecasesofModel1(fiberthickness

),Model2(fiberthickness

_)andModel3(fiberdiameter

)inFig.3,withanequivalentfibervolumefractionbutwithadifferentshape.Asseenfromthefigure,thetransmissionenergyoftheModel1isfarlargerthanthatModel2andModel3.

FromFig.4,whichembeddedtheboard-shapedfiber,twoenergy

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1