湖南工业大学信号与系统实验报告.docx

上传人:b****9 文档编号:25194188 上传时间:2023-06-06 格式:DOCX 页数:13 大小:440.95KB
下载 相关 举报
湖南工业大学信号与系统实验报告.docx_第1页
第1页 / 共13页
湖南工业大学信号与系统实验报告.docx_第2页
第2页 / 共13页
湖南工业大学信号与系统实验报告.docx_第3页
第3页 / 共13页
湖南工业大学信号与系统实验报告.docx_第4页
第4页 / 共13页
湖南工业大学信号与系统实验报告.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

湖南工业大学信号与系统实验报告.docx

《湖南工业大学信号与系统实验报告.docx》由会员分享,可在线阅读,更多相关《湖南工业大学信号与系统实验报告.docx(13页珍藏版)》请在冰豆网上搜索。

湖南工业大学信号与系统实验报告.docx

湖南工业大学信号与系统实验报告

湖南工业大学

信号与系统

实验报告

 

学院:

电气与信息工程学院

专业班级:

电子信息工程1203班

小组成员:

姓名:

 

实验一用同时分析法观测50Hz非正弦周期信号的分解与合成

一、实验目的

1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备

1、信号与系统实验箱:

TKSS-A型或TKSS-B型TKSS-C型;

2、双踪示波器

三、实验原理

1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n等倍数分别称为二次、三次、四次、…、n次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。

2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,

3、一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示

图1-1方波频谱图

表2-1各种不同波形的傅立叶级数表达式

1、方波

2、三角波

3、半波

4、全波

5、矩形波

实验装置的结构如图1-2所示

图1-2信号分解于合成实验装置结构框图

图中LPF为低通滤波器,可分解出非正弦周期函数的直流分量。

BPF1-BPF6为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。

四、预习要求

在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。

五、实验内容及步骤

1、调节函数信号发生器,使其输出50Hz的方波信号,并将其接至信号分解实验模块BPF的输入端,然后细调函数发生器的输出频率,使该模块的基波50Hz成分BPF的输出幅度为最大。

2、将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表纪录之。

频率fo

f

2f

3f

4f

5f

频率(Hz)

50

100

150

250

250

幅值(V)

6.78

0.2

2.30

0.45

7.35

3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并纪录之。

4、在3的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。

1、什么样的周期性函数没有直流分量和余弦项。

答:

没有常数项的函数f(t).

2、分析理论合成的波形与实验观测到的合成波形之间误差产生的原因。

答:

元件的固有噪声,线路接触不良

七、感悟与体会

学会了示波器的使用,不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

3、一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图

实验二无源和有源滤波器(低通/高通)

一、实验目的

1、了解RC无源和有源滤波器的种类、基本结构及特性

2、分析和对比无源和有源滤波器的滤波特性

二、仪器设备

1、信号与系统实验箱:

TKSS-A型或TKSS-B型TKSS-C型;

2、双踪示波器

三、原理说明

1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以由RLC元件或RC元件构成的无源滤波器,也可以由RC元件和有源器件构成的有源滤波器。

2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。

把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。

而通带与阻带的分界点的频率ωc称为截止频率或称为转折频率。

图2-1中的|H(jω)|为通带的电压放大倍数。

ω0为中心频率,ωclωch分别为低端和高端截止频率。

图2-1四种滤波器的幅频特性图

两种滤波器的实验线路图如图2-2所示

图2-2-1

图2-2-2

3、图2-3所示,滤波器的频率特性H(jω)(又称传递函数),它用下式表示

式中

为滤波器的幅频特性,

为滤波器的相频特性。

它们都可以通过实验的方法来测量。

图2-3

四、预习要求

1、为使实验能顺利进行,做到心中有数,课前对教材的相关内容和实验原理、目的与要求、步骤和方法要作充分的预习(并预习实验的结果)。

2、导各类无源和有源滤波器的频率特性,并据此分别画出滤波器的幅频特性曲线

五、实验内容及步骤

1、滤波其的输入端接正弦信号发生器,滤波器的输出端接示波器

2、测试无源和有源低通滤波器的幅频特性

1)测试RC无源低通滤波器的幅频特性

用图2-2-1(a)所示的电路,测试RC无源低通滤波器的特性。

3、实验时,必须在保持正弦信号输入电压(U1)幅值不变的情况下,逐渐改变其频率,用实验箱提供的数字式真有效值交流电压表(10Hz

注意每当改变信号源频率时,都必须观测一下输入信号U1使之保持不变。

实验时应接入双踪示波器,分别观测输入U1和输出U2的波形(注意:

在整个实验过程中应保持U1恒定不变)。

表一:

F(Hz)

100

150

200

700

2008

4109

8252

15049

U1(V)

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

U2(V)

2.95

2.95

2.94

2.92

2.78

2.42

2.15

1.03

2)测试RC有源低通滤波器的幅频特性

实验电路如图2-2-1(b)所示。

取R=1K、C=0.01μF、K=1。

测试方法用

(1)中相同的方法进行实验操作,并将实验数据记入表二中。

表二:

F(Hz)

300

1000

2808

8250

15152

25799

U1(V)

3.0

3.0

3.0

3.0

3.0

3.0

U2(V)

2.99

2.99

2.90

2.32

1.54

0.81

六、思考题

1、试比较有源滤波器和无源滤波器各自的优缺点。

答:

有源滤波自身就是谐波源。

其依靠电力电子装置,在检测到系统谐波的同时产生一组和系统幅值相等,相位相反的谐波向量,这样可以抵消掉系统谐波,使其成为正弦波形。

有源滤波除了滤除谐波外,同时还可以动态补偿无功功率。

其优点是反映动作迅速,滤除谐波可达到95%以上,补偿无功细致。

缺点为价格高,容量小。

由于目前国际上大容量硅阀技术还不成熟,所以当前常见的有源滤波容量不超过600kvar。

其运行可靠性也不及无源。

一般无源滤波指通过电感和电容的匹配对某次谐波并联低阻(调谐滤波)状态,给某次谐波电流构成一个低阻态通路。

这样谐波电流就不会流入系统。

无源滤波的优点为成本低,运行稳定,技术相对成熟,容量大。

缺点为谐波滤除率一般只有80%,对基波的无功补偿也是一定的。

目前在容量大且要求补偿细致的地方一般使用有源加无源混合型,即无源进行大容量的滤波补偿,有源进行微调。

七、注意事项

1、在实验测量过程中,必须始终保持正弦波信号的输出(即滤波器的输入)电压U1幅值不变,且输入信号幅度不宜过大。

八、感悟与体验

随着电力电子装置等非线性负荷在电力系统中应用的日益广泛,其从电力系统中提取的无功功率和谐波电流所带来的电能质量问题也日益严重。

为了解决上述问题,采用无源的比滤波器抑制谐波和利用电容器组对功率因数进行校正等无源补偿技术,结构简单、价格便宜、鲁棒性强,所以实践中得到广泛应用;但是其补偿固定、体积大、可能与系统发生谐振的缺点,随着供电系统容量的不断增大和补偿对象的日益复杂而变得越来越突出,特别是它主要适用于等效串联阻抗固定的系统,而这对于结构和负荷不断变化的配电系统而言,恰恰是难以实现的。

而随着电力电子技术的进展发展起来的有源滤波器,则由于可以有效地对包括无功功率和谐波电流在内的干扰电流进行补偿,所以受到越来越广泛的关注列。

但是其缺点也十分明显,比如其容量在有些场合会高达负荷容量的80%,再加上构成补偿装置核心的开关器件的价格通常很高,所以往往成为一种代价高昂的电能质量问题解决方法。

特别是有时非线性负荷带来的电能质量问题同时包括电流谐波和电压畸变两方面的问题,而单一的有源滤波器又不能同时解决上述问题,所以,装置的高价格和补偿能力的局限,大大地限制了用户对有源滤波器的接受程度。

 

实验三抽样定理

一、实验目的

1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验设备

1、信号与系统实验箱:

TKSS-A型或TKSS-B型TKSS-C型;

2、双踪示波器

三、原理说明

1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号fs(t)可以看成连续f(t)和一组开关函数s(t)的乘积。

s(t)是一组周期性窄脉冲,见实验图3-1,Ts(t)称为抽样周期,其倒数fs(t)=1/Ts称为抽样频率。

图3-1矩形抽样脉冲

对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。

平移的频率等于抽样频率fs(t)及其谐波频率2fs、3fs》》》》》》。

当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率fn的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是fs2B,其中fs为抽样频率,B为原信号占有的频带宽度。

而fmin=2B为最低抽样频率又称“柰奎斯特抽样率”。

当fs<2B时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

图3-2冲激抽样信号的频谱

在实际使用中,仅包含有限频率的信号是及少的,因此即使fs=2B,恢复后的信号失真还是难免的。

图3-2画出了当抽样频率fs>2B(不混叠时)fs<2B(混叠时)两种情况下冲激抽样信号的频谱。

实验中fs>2B、fs=2B、fs<2B三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率fs必须大于信号频率中最高频率的两倍。

4、为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图3-3的方案。

除了选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混迭。

但这也会造成失真。

如实验选用的信号频带较窄,则可不设前置低通滤波器,本实验就是如此。

图3-3抽样定理实验方框图

四、预习要求

1、什么是最低抽样频率。

就是抽样频率的最小值全数字助听器中输入的模拟信号转化到数字信号需经抽样、量化和编码三个处理步骤。

抽样是指在连续的模拟信号中抽取间断的信号用于后面步骤的处理,每秒钟抽取的信号数就是抽样频率,根据抽样不失真定理,理论上要使信号能无失真地还原,抽样频率必须大于信号频率的两倍。

五、实验内容及步骤

1、分别将正弦波、方波或三角波信号和s(t)送入抽样器,观察正弦波经抽样后信号。

2、观察波形基本复原后信号,记录实际的最低抽样频率。

最低抽样频率为

六、感悟与体会

通过本次实验,了解信号的采样方法与过程以及信号恢复的方法,并验证抽样定理。

进行该次试验,组装、调整函数信号发生器时,面对复杂的电路板,才体会到了事先做好预习的重要性。

看懂预习册的电路图,仔细得寻找相关的元件,耐心、细心。

对要做的实验内容得有一定的了解和分析能力,即相关的知识掌握,才能够在实验过程中检查数据的正确性,和准确性。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1