先进制造技术毕业论文新精编版.docx

上传人:b****7 文档编号:25139268 上传时间:2023-06-05 格式:DOCX 页数:19 大小:31.23KB
下载 相关 举报
先进制造技术毕业论文新精编版.docx_第1页
第1页 / 共19页
先进制造技术毕业论文新精编版.docx_第2页
第2页 / 共19页
先进制造技术毕业论文新精编版.docx_第3页
第3页 / 共19页
先进制造技术毕业论文新精编版.docx_第4页
第4页 / 共19页
先进制造技术毕业论文新精编版.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

先进制造技术毕业论文新精编版.docx

《先进制造技术毕业论文新精编版.docx》由会员分享,可在线阅读,更多相关《先进制造技术毕业论文新精编版.docx(19页珍藏版)》请在冰豆网上搜索。

先进制造技术毕业论文新精编版.docx

先进制造技术毕业论文新精编版

GEGROUPsystemofficeroom【GEIHUA16H-GEIHUAGEIHUA8Q8-GEIHUA1688】

 

先进制造技术毕业论文新

先进制造工艺现状与发展趋势

张锦华

班级09机电一体化

专业机电一体化

指导老师张锦华

目录

前言………………………………………………………………………………………3

第一章先进制造技术的发展状况………………………………….

第二章先进制造工艺技术的现状与发展趋势…………………

第三章谈谈我国目前先进制造技术的现状及发展途径…………………………………………………………………………………

谢辞………………………………………………………………………………………………

先进制造技术的发展状况

摘要:

本文介绍了当今制造技术面临的问题,论述了先进制造的前沿科学,并展望了先进制造技术的发展前景。

关键词:

问题;先进制造技术;前沿科学;应用前景

论文

制造业是现代国民经济和综合国力的重要支柱,其生产总值一般占一个国家国内生产总值的20%~55%。

在一个国家的企业生产力构成中,制造技术的作用一般占60%左右。

专家认为,世界上各个国家经济的竞争,主要是制造技术的竞争。

其竞争能力最终体现在所生产的产品的市场占有率上。

随着经济技术的高速发展以及顾客需求和市场环境的不断变化,这种竞争日趋激烈,因而各国政府都非常重视对先进制造技术的研究。

1当前制造科学要解决的问题

当前制造科学要解决的问题主要集中在以下几方面:

(1)制造系统是一个复杂的大系统,为满足制造系统敏捷性、快速响应和快速重组的能力,必须借鉴信息科学、生命科学和社会科学等多学科的研究成果,探索制造系统新的体系结构、制造模式和制造系统有效的运行机制。

制造系统优化的组织结构和良好的运行状况是制造系统建模、仿真和优化的主要目标。

制造系统新的体系结构不仅对制造企业的敏捷性和对需求的响应能力及可重组能力有重要意义,而且对制造企业底层生产设备的柔性和可动态重组能力提出了更高的要求。

生物制造观越来越多地被引入制造系统,以满足制造系统新的要求。

(2)为支持快速敏捷制造,几何知识的共享已成为制约现代制造技术中产品开发和制造的关键问题。

例如在计算机辅助设计与制造(CAD/CAM)集成、坐标测量(CMM)和机器人学等方面,在三维现实空间(3-RealSpace)中,都存在大量的几何算法设计和分析等问题,特别是其中的几何表示、几何计算和几何推理问题;在测量和机器人路径规划及零件的寻位(如Localization)等方面,存在C-空间

(配置空间ConfigurationSpace)的几何计算和几何推理问题;在物体操作(夹持、抓取和装配等)描述和机器人多指抓取规划、装配运动规划和操作规划方面则需要在旋量空间(ScrewSpace)进行几何推理。

制造过程中物理和力学现象的几何化研究形成了制造科学中几何计算和几何推理等多方面的研究课题,其理论有待进一步突破,当前一门新学科--计算机几何正在受到日益广泛和深入的研究。

(3)在现代制造过程中,信息不仅已成为主宰制造产业的决定性因素,而且还是最活跃的驱动因素。

(4)各种人工智能工具和计算智能方法在制造中的广泛应用促进了制造智能的发展。

一类基于生物进化算法的计算智能工具,在包括调度问题在内的组合优化求解技术领域中,受到越来越普遍的关注,有望在制造中完成组合优化问题时的求解速度和求解精度方面双双突破问题规模的制约。

制造智能还表现在:

智能调度、智能设计、智能加工、机器人学、智能控制、智能工艺规划、智能诊断等多方面。

这些问题是当前产品创新的关键理论问题,也是制造由一门技艺上升为一门科学的重要基础性问题。

这些问题的重点突破,可以形成产品创新的基础研究体系。

2现代机械工程的前沿科学

不同科学之间的交叉融合将产生新的科学聚集,经济的发展和社会的进步对科学技术产生了新的要求和期望,从而形成前沿科学。

前沿科学也就是已解决的和未解决的科学问题之间的界域。

前沿科学具有明显的时域、领域和动态特性。

工程前沿科学区别于一般基础科学的重要特征是它涵盖了工程实际中出现的关键科学技术问题。

超声电机、超高速切削、绿色设计与制造等领域,国内外已经做了大量的研究工作,但创新的关键是机械科学问题还不明朗。

大型复杂机械系统的性能优化设计和产品创新设计、智能结构和系统、智能机器人及其动力学、纳米摩擦学、制造过程的三维数值模拟和物理模拟、超精度和微细加工关键工艺基础、大型和超大型精密仪器装备的设计和制造基础、虚拟制造和虚拟仪器、纳米测量及仪器、并联轴机床、微型机电系统等领域国内外虽然已做了不少研究,但仍有许多关键科学技术问题有待解决。

信息科学、纳米科学、材料科学、生命科学、管理科学和制造科学将是改变21世纪的主流科学,由此产生的高新技术及其产业将改变世界的面貌。

因此,与以上领域相交叉发展的制造系统和制造信息学、纳米机械和纳米制造科学、仿生机械和仿生制造学、制造管理科学和可重构制造系统等会是21世纪机械工程科学的重要前沿科学。

2.1制造科学与信息科学的交叉--制造信息科学

机电产品是信息在原材料上的物化。

许多现代产品的价值增值主要体现在信息上。

因此制造过程中信息的获取和应用十分重要。

信息化是制造科学技术走向全球化和现代化的重要标志。

人们一方面对制造技术开始探索产品设计和制造过程中的信息本质,另一方面对制造技术本身加以改造,以使得其适应新的信息化制造环境。

随着对制造过程和制造系统认识的加深,研究者们正试图以全新的概念和方式对其加以描述和表达,以进一步达到实现控制和优化的目的。

与制造有关的信息主要有产品信息、工艺信息和管理信息,这一领域有如下主要研究方向和内容:

(1)制造信息的获取、处理、存储、传递和应用,大量制造信息向知识和决策转化。

(2)非符号信息的表达、制造信息的保真传递、制造信息的管理、非完整制造信息状态下的生产决策、虚拟管理制造、基于网络环境下的设计和制造、制造过程和制造系统中的控制科学问题。

这些内容是制造科学和信息科学基础融合的产物,构成了制造科学中的新分支--制造信息学。

2.2微机械及其制造技术研究

微型电子机械系统(MEMS),是指集微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。

MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。

MEMS的发展将极大地促进各类产品的袖珍化、微型化,成数量级的提高器件与系统的功能密度、信息密度与互联密度,大幅度地节能、节材。

它不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统无法完成的任务。

微机械是机械技术与电子技术在纳米尺度上相融合的产物。

早在1959年就有科学家提出微型机械的设想,1962年第一个硅微型压力传感器问世。

1987年美国加州大学伯克利分校研制出转子直径为60~120μm的硅微型静电电动机,显示出利用硅微加工工艺制作微小可动结构并与集成电路兼容制造微小系统的潜力。

微机械技术有可能像20世纪的微电子技术那样,在21世纪对世界科技、经济发展和国防建设产生巨大的影响。

近10年来,微机械的发展令人瞩目。

其特点如下:

相当数量的微型元器件(微型结构、微型传感器和微型执行器等)和微系统研究成功,体现了其现实的和潜在的应用价值;多种微型制造技术的发展,特别是半导体微细加工等技术已成为微系统的支撑技术;微型机电系统的研究需要多学科交叉的研究队伍,微型机电系统技术是在微电子工艺的基础上发展的多学科交叉的前沿研究领域,涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等多种工程技术和科学。

目前对微观条件下的机械系统的运动规律,微小构件的物理特性和载荷作用下的力学行为等尚缺乏充分的认识,还没有形成基于一定理论基础之上的微系统设计理论与方法,因此只能凭经验和试探的方法进行研究。

微型机械系统研究中存在的关键科学问题有微系统的尺度效应、物理特性和生化特性等。

微系统的研究正处于突破的前夜,是亟待深入研究的领域。

2.3材料制备/零件制造一体化和加工新技术基础

材料是人类进步的里程碑,是制造业和高技术发展的基础。

每一种重要新材料的成功制备和应用,都会推进物质文明,促进国家经济实力和军事实力的增强。

21世纪中,世界将由资源消耗型的工业经济向知识经济转变,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的设计实现定量化、数字化;要求材料和零件的制备快速、高效并实现二者一体化、集成化。

材料和零件的数字化设计与拟实仿真优化是实现材料与零件的高效优质制备/制造及二者一体化、集成化制造的关键。

一方面,通过计算机完成拟实仿真优化后可以减少材料制备与零件制造过程中的实验性环节,获得最佳的工艺方案,实现材料与零件的高效优质制备/制造;另一方面,根据不同材料性能的要求,如弹性模量、热膨胀系数、电磁性能等,研究材料和零件的设计形式。

进而结合传统的去除材料式制造技术、增加材料式覆层技术等,研究多种材料组分的复合成形工艺技术。

形成材料与零件的数字化制造理论、技术和方法,如快速成形技术采用材料逐渐增长的原理,突破了传统的去材法和变形法机械加工的许多限制,加工过程不需要工具或模具,能迅速制造出任意复杂形状又具有一定功能的三维实体模型或零件。

2.4机械仿生制造

21世纪将是生命科学的世纪,机械科学和生命科学的深度融合将产生全新概念的产品(如智能仿生结构),开发出新工艺(如生长成形工艺)和开辟一系列的新产业,并为解决产品设计、制造过程和系统中一系列难题提供新的解决方法。

这是一个极富创新和挑战的前沿领域。

地球上的生物在漫长的进化中所积累的优良品性为解决人类制造活动中的各种难题提供了范例和指南。

从生命现象中学习组织与运行复杂系统的方法和技巧,是今后解决目前制造业所面临许多难题的一条有效出路。

仿生制造指的是模仿生物器官的自组织、自愈合、自增长与自进化等功能结构和运行模式的一种制造系统与制造过程。

如果说制造过程的机械化、自动化延伸了人类的体力,智能化延伸了人类的智力,那么,"仿生制造"则可以说延伸了人类自身的组织结构和进化过程。

仿生制造所涉及的科学问题是生物的"自组织"机制及其在制造系统中的应用问题。

所谓"自组织"是指一个系统在其内在机制的驱动下,在组织结构和运行模式上不断自我完善、从而提高对于环境适应能力的过程。

仿生制造的"自组织"机制为自下而上的产品并行设计、制造工艺规程的自动生成、生产系统的动态重组以及产品和制造系统的自动趋优提供了理论基础和实现条件。

仿生制造属于制造科学和生命科学的"远缘杂交",它将对21世纪的制造业产生巨大的影响。

仿生制造的研究内容目前有两个方面:

2.4.1面向生命的仿生制造

研究生命现象的一般规律和模型,例如人工生命、细胞自动机、生物的信息处理技巧、生物智能、生物型的组织结构和运行模式以及生物的进化和趋优机制等;

2.4.2面向制造的仿生制造

研究仿生制造系统的自组织机制与方法,例如:

基于充分信息共享的仿生设计原理,基于多自律单元协同的分布式控制和基于进化机制的寻优策略;研究仿生制造的概念体系及其基础,例如:

仿生空间的形式化描述及其信息映射关系,仿生系统及其演化过程的复杂度计量方法。

机械仿生与仿生制造是机械科学与生命科学、信息科学、材料科学等学科的高度融合,其研究内容包括生长成形工艺、仿生设计和制造系统、智能仿生机械和生物成形制造等。

目前所做的研究工作大多属前沿探索性的工作,具有鲜明的基础研究的特点,如果抓住机遇研究下去,将可能产生革命性的突破。

今后应关注的研究领域有生物加工技术、仿生制造系统、基于快速原型制造技术的组织工程学,以及与生物工程相关的关键技术基础等。

3现代制造技术的发展趋势

20世纪90年代以来,世界各国都把制造技术的研究和开发作为国家的关键技术进行优先发展,如美国的先进制造技术计划AMTP、日本的智能制造技术(IMS)国际合作计划、韩国的高级现代技术国家计划(G--7)、德国的制造2000计划和欧共体的ESPRIT和BRITE-EURAM计划。

随着电子、信息等高新技术的不断发展,市场需求个性化与多样化,未来现代制造技术发展的总趋势是向精密化、柔性化、网络化、虚拟化、智能化、绿色集成化、全球化的方向发展。

当前现代制造技术的发展趋势大致有以下九个方面:

(2)设计技术与手段更现代化。

(3)成型及制造技术精密化、制造过程实现低能耗。

(4)新型特种加工方法的形成。

(5)开发新一代超精密、超高速制造装备。

(6)加工工艺由技艺发展为工程科学。

(7)实施无污染绿色制造。

(8)制造业中广泛应用虚拟现实技术。

(9)制造以人为本。

先进制造工艺技术的现状与发展趋势

第一章先进制造工艺的特点  

先进制造工艺的特点可用先进性、实用性和前沿性来概括。

1.先进性

先进制造工艺的先进性主要表现在优质、高效、低耗、洁净、灵活(柔性)五个方面。

优质:

加工制造出的零件或整机质量高,性能好;零部件尺寸精确,表面光洁,内部组织致密,无缺陷及杂质,使用性能好;整机的结构、色彩美观宜人,使用寿命和可靠性高。

高效:

生产效率及劳动生产率高,大大降低了操作者的劳动强度。

低耗:

节省原材料及能源。

洁净:

生产过程不污染环境,零排放或少排放。

灵活:

能快速对市场变化及产品设计的更改作出反应,适应多品种柔性生产。

2.实用性

先进制造工艺的实用性主要表现在两个方面。

一是应用普遍性,它是当今或不久将来机械工厂量大面广的看家工艺;;二是经济适用性,它一般投资不高,且有不同档次,宜于工厂根据本身的条件通过技术改造予以采纳。

3.前沿性

先进制造工艺的前沿性主要表现在:

先进制造工艺是高新技术产业化或传统工艺高新技术化的结果,它们是制造工艺研究最为活跃的前沿领域。

部分先进制造工艺可能目前应用还不广泛,但是它们代表着某些发展方向,而且可望会得到越来越广泛的应用。

因此,先进制造工艺就是机械工厂普遍能够采用,具有直接推广价值或广阔应用前景的一系列优质、高效、低耗、洁净、灵活工艺的总称

第一章先进制造工艺的特点  

先进制造工艺的特点可用先进性、实用性和前沿性来概括。

1.先进性

先进制造工艺的先进性主要表现在优质、高效、低耗、洁净、灵活(柔性)五个方面。

优质:

加工制造出的零件或整机质量高,性能好;零部件尺寸精确,表面光洁,内部组织致密,无缺陷及杂质,使用性能好;整机的结构、色彩美观宜人,使用寿命和可靠性高。

高效:

生产效率及劳动生产率高,大大降低了操作者的劳动强度。

低耗:

节省原材料及能源。

洁净:

生产过程不污染环境,零排放或少排放。

灵活:

能快速对市场变化及产品设计的更改作出反应,适应多品种柔性生产。

2.实用性

先进制造工艺的实用性主要表现在两个方面。

一是应用普遍性,它是当今或不久将来机械工厂量大面广的看家工艺;;二是经济适用性,它一般投资不高,且有不同档次,宜于工厂根据本身的条件通过技术改造予以采纳。

3.前沿性

先进制造工艺的前沿性主要表现在:

先进制造工艺是高新技术产业化或传统工艺高新技术化的结果,它们是制造工艺研究最为活跃的前沿领域。

部分先进制造工艺可能目前应用还不广泛,但是它们代表着某些发展方向,而且可望会得到越来越广泛的应用。

因此,先进制造工艺就是机械工厂普遍能够采用,具有直接推广价值或广阔应用前景的一系列优质、高效、低耗、洁净、灵活工艺的总称

第二章先进制造工艺的技术发展趋势

1.采用模拟技术,优化工艺设计

成形、改性与加工是机械制造工艺的主要工序,是将原材料(主要是金属材料)制造加工成毛坯或零部件的过程。

这些工艺过程特别是热加工过程是极其复杂的高温、动态、瞬时过程,其间发生一系列复杂的物理、化学、冶金变化,这些变化不仅不能直接观察,间接测试也十分困难,因而多年来,热加工工艺设计只能凭“经验”。

近年来,应用计算机技术及现代测试技术形成的热加工工艺模拟及优化设计技术风靡全球,成为热加工各个学科最为热门的研究热点和跨世纪的技术前沿。

应用模拟技术,可以虚拟显示材料热加工(铸造、锻压、焊接、热处理、注塑等)的工艺过程,预测工艺结果(组织性能质量),并通过不同参数比较以优化工艺设计,确保大件一次制造成功;确保成批件一次试模成功。

模拟技术同样已开始应用于机械加工、特种加工及装配过程,并已向拟实制造成形的方向发展,成为分散网络化制造、数字化制造及制造全球化的技术基础。

2.成形精度向近无余量方向发展

毛坯和零件的成形是机械制造的第一道工序。

金属毛坯和零件的成形一般有铸造、锻造、冲压、焊接和轧材下料五类方法。

随着毛坯精密成形工艺的发展,零件成形的型成形的形状尺寸精度正从近净成形(NearNetShapeForming)向净成形(NetShapeForming)即近无余量成形方向发展。

“毛坯”与“零件”的界限越来越小。

有的毛坯成形后,已接近或达到零件的最终形状和尺寸,磨削后即可装配。

主要方法有多种形式的精铸、精锻、精冲、冷温挤压、精密焊接及切割。

如在汽车生产中,“接近零余量的敏捷及精密冲压系统”及“智能电阻焊系统”正在研究开发中。

3.成形质量向近无“缺陷”方向发展

毛坯和零件成形质量高低的一另一指标是缺陷的多少、大小和危害程度。

由于热加工过程十分复杂,因素多变,所以很难避免缺陷的产生。

近年来热加工界提出了“向近无“缺陷”方向发展”的目标,这个“缺陷”是指不致引起早期失效的临界缺陷概念。

采取的主要措施有:

采用先进工艺,净化熔融金属薄板,增大合金组织的致密度,为得到健全的铸件、锻件奠定基础;采用模拟技术,优化工艺设计,实现一次成形及试模成功;加强工艺过程监控及无损检测,及时发现超标零件;通过零件安全可靠性能研究及评估,确定临界缺陷量值等。

4.机械加工向超精密、超高速方向发展

超精密加工技术目前已进入纳米加工时代,加工精度达0.025μm,表面粗糙度达0.0045μm。

精切削加工技术由目前的红处波段向加工可见光波段或不可见紫外线和X射线波段趋近;超精加工机床向多功能模块化方向发展;超精加工材料由金属扩大到非金属。

目前起高速切削铝合金的切削已超过1600m/min;铸铁为1500m/min;超高速切削已成为解决一些难加工材料加工问题的一条途径。

5.采用新型能源及复合加工。

解决新型材料的加工和表面改性难题激光、电子束、离子束、分子束、等离子体、微波、超声波、电液、电磁、高压水射流等新型能源或能源载体的引入,形成了多咱崭新的特种加工及高密度能切割、焊接、熔炼、锻压、热处理、表面保护等加工工艺或复合工艺。

其中以多种形式的激光加工发展最为迅速。

这些新工艺不仅提高了加工效率和质量,同时还解决了超硬材料、高分子材料、复合材料、工程陶瓷等新型材料的加工难题。

6.采用自动化技术,实现工艺过程的优化控制微电子、计算机、自动化技术与工艺设备相结合,形成了从单机到系统,从刚性到柔性,从简单到复杂等不同档次的多种自动化成形加工技术,使工艺过程控制方式发生质的变化,其发展历程及趋势为:

1)应用集成电路、可编程序控制器、微机等新型控制元件、装置实现工艺设备的单机、生产线或系统的自动化控制。

2)应用新型传感、无损检测、理化检验及计算机、微电子技术,实时测量并监控工艺过程的温度、压力、形状、尺寸、位移、应力、应变、振动、声、像、电、磁及合金与气体的成分、组织结构等参数,实现在线测量、测试技术的电子化、数字化、计算机及工艺参数的闭环控制,进而实现自适应控制。

3)将计算机辅助工艺编程(CAPP)、数控、CAD/CAM、机器人、自动化搬运仓储、管理信息系统(MIS)等自动化单元技术综合用于工艺设计、加工及物流过程,形成不同档次的柔性自动化系统;数控加工、加工中心(MC)、柔性制造单元(FMC)、柔性制造岛(FMI)、柔性制造系统(FMS)和柔性生产线(FTL),及至形成计算机集成制造系统(CIMS)和智能制造系统(IMS)。

7.采用清洁能源及原材料、实现清洁生产机械加工过程产生大量废水、废渣、废气、噪声、振动、热辐射等,劳动条件繁重危险,已不适应当代清洁生产的要求。

近年来清洁生产成为加工过程的一个新的目标,除搞好三废治理外,重在从源头抓起,杜绝污染的产生。

其途径之一为:

一是采用清洁能源,如用电加热代替燃煤加热锻坯,用电熔化代替焦炭冲天炉熔化铁液;二是采用清洁的工艺材料开发新的工艺方法,如在锻造生产中采用非石墨型润滑材料,在砂型铸造中采用非煤粉型砂;三是采用新结构,减少设备的噪声和振动。

如在铸造生产中,噪声极大的震击式造型机已被射压、静压造型机所取代。

在模锻生产中,噪声大且耗能多的模锻锤,已逐渐被电液传动的曲柄热模锻压力机、高能螺旋压力机所取代。

在清洁生产基础上,满足产品从设计、生产到使用乃至回收和废弃处理的整个周期都符合特定的环境要求的“绿色制造”将成为21世纪制造业的重要特征。

8.加工与设计之间的界限逐渐淡化,并趋向集成及一体化。

CAD/CAM、FMS、CIMS、并行工程、快速原型等先进制造技术及哲理的出现,使加工与设计之间的界限逐渐淡化,并走向一体化。

同时冷热加工之间,加工过程、检测过程、物流过程、装配过程之间的界限亦趋向谈化,、消失,而集成于统一的制造系统之中。

9.工艺技术与信息技术、管理技术紧密结合,先进制造生产模式获得不断发展先进制造技术系统是一个由技术、人和组织构成的集成体系,三者有效集成才能取得满意的效果。

因而先进制造工艺只有通过和信息、管理技术紧密结合,不断探索适应需求的新型生产模式,才能提高先进制造工艺的使用效果。

先进制造生产模式主要有:

柔性生产、准时生产、精益生产、敏捷制造、并行工程、分散网络化制造等。

这些先进制造模式是制造工艺与信息、管理技术紧密结合的结果,反过来它也影响并促进制造工艺的不断革新与发展。

第三章谈谈我国目前先进制造技术的现状及发展途径

一当前制造科学要解决的问题

a)制造系统结构日益复杂:

为满足制造系统敏捷性、快速响应和快速重组的能力,必须借鉴信息科学、生命科学和社会科学等多学科的研究成果,探索制造系统新的体系结构、制造模式和制造系统有效的运行机制。

制造系统优化的组织结构和良好的运行状况是制造系统建模、仿真和优化的主要目标。

制造系统新的体系结构不仅对制造企业的敏捷性和对需求的响应能力及可重组能力有重要意义,而且对制造企业底层生产设备的柔性和可动态重组能力提出了更高的要求;

b)基础几何图论运算更加复杂:

例如在计算机辅助

设计与制造(CAD/CAM)集成、坐标测量(CMM)和机器人学等方面,在三维现实空间(3-realspace)中,都存在大量的几何算法设计和分析等问题,特别是其中的几何表示、几何计算和几何推理问题;在测量和机器人路径规划及零件的寻位(如localization)等方面,存在C-空间(配置空间configurationspace)的几何计算和几何推理问题;在物体操作(夹持、抓取和装配等)描述和机器人多指抓取规划、装配运动规划和操作规划方面则需要在旋量空间(screwspace)进行几何推理。

制造过程中物理和力学现象的几何化研究形成了制造科学中几何计算和几何推理等多方面的研究课题,其理论有待进一步突破,当前一门新学科-计算机几何正在受到日益广泛和深人的研究;

c)制造信息量日益庞杂:

提高制造系统的信息处理能力已成为现代制造科学发展的一个重点。

由于制造系统信息组织和结构的多层次性,制造信息的获取集成与融合呈现出立体性、信息度量多维性和信息组织多层次性。

在制造信息的结构模型、制造信息的一致性约束、传播处理和海量数据的制造知识库管理等方面,都还有待进一步突破;

d)多样智能制造技术大量涌现:

如基于

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1