工程热力学实验指导书全解.docx

上传人:b****4 文档编号:24921303 上传时间:2023-06-02 格式:DOCX 页数:17 大小:235.21KB
下载 相关 举报
工程热力学实验指导书全解.docx_第1页
第1页 / 共17页
工程热力学实验指导书全解.docx_第2页
第2页 / 共17页
工程热力学实验指导书全解.docx_第3页
第3页 / 共17页
工程热力学实验指导书全解.docx_第4页
第4页 / 共17页
工程热力学实验指导书全解.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

工程热力学实验指导书全解.docx

《工程热力学实验指导书全解.docx》由会员分享,可在线阅读,更多相关《工程热力学实验指导书全解.docx(17页珍藏版)》请在冰豆网上搜索。

工程热力学实验指导书全解.docx

工程热力学实验指导书全解

实验一空气定压比热容测定

一、实验目的

1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。

2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。

3.学会实验中所用各种仪表的正确使用方法。

二、实验原理

由热力学可知,气体定压比热容的定义式为

(1)

在没有对外界作功的气体定压流动过程中,

此时气体的定压比热容可表示为

(2)

当气体在此定压过程中由温度t1被加热至t2时,气体在此温度范围内的平均定压比热容可由下式确定

(kJ/kg℃)(3)

式中,M—气体的质量流量,kg/s;

Qp—气体在定压流动过程中吸收的热量,kJ/s。

大气是含有水蒸汽的湿空气。

当湿空气由温度t1被加热至t2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。

如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。

低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为

(kJ/kgK)

式中T为绝对温度,单位为K。

该式可用于250~600K范围的空气,平均偏差为0.03%,最大偏差为0.28%。

在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为

(4)

由t1加热到t2的平均定压比热容则为

(5)

这说明,此时气体的平均比热容等于平均温度tm=(t1+t2)/2时的定压比热容。

因此,可以对某一气体在n个不同的平均温度tmi下测出其定压比热容cpmi,然后根据最小二乘法原理,确定

(6)

(7)

从而便可得到比热容的实验关系式。

三、实验设备

图1实验装置图

1.整个实验装置由风机、流量计、测试比热容仪器本体、电功率调节系统及测量系统共四部分组成,如图1所示。

2.比热容仪器本体由图2所示。

3.空气(或其它气体)由风机经流量计送入比热容仪本体,经加热、均流、旋流、混流、测温后流出。

气体流量由节流阀控制,气体出口温度由输入电加热器的电压调节。

4.该比热容仪可测量300℃以下气体的定压比热容。

 

 

图2比热容仪本体图

四、实验步骤

1.按图1所示接好电源线和测量仪表。

经指导教师认可后接通电源,将选择所需的出口温度计插入混流网的凹槽中。

2.小心取下流量计上的温度计。

开动风机,调节流阀,使流量保持在预定值附近,测出流量计出口处的干球温度ta和湿球温度tw。

3.将温度计放回原位。

调节流量,使它保持在预定值附近。

调节电压,开始加热(加热功率的大小取决于气体流量和气流进出口温度差,可依据关系式Q=K12Δt/τ进行估算,式中Q为加热功率,W;Δt为比热容仪本体进出口温度差,℃;τ为每流过10升空气所需要的时间,s;K为设备修正系数)。

4.待出口温度稳定后(出口温度在10分钟内无变化或有微小变化,即可视为稳定),即可采集实验数据。

需采集的数据有:

(1)每10升气体通过流量计时所需的时间τ(s);

(2)比热容仪进口温度t1(℃)与出口温度t2(℃);

(3)当时大气压力B(mmHg)和流量计出口处的表压力Δh(mmH2O);

(4)电加热器的电压U(V)和电流I(A);

5.改变电压,使出口温度改变并达到新的预定值,重复步骤4。

在允许的时间内可多做几次实验。

将上述实验数据填入所列的原始数据表中。

五、计算公式

1.根据流量计出口处空气的干球温度ta和湿球温度tw,在干湿球温度计上读出空气的相对湿度φ,再从湿空气的焓湿图上查出湿空气的含湿量d(g水蒸汽/kg干空气),计算出水蒸汽的容积成分rw

2.电加热器消耗的功率可由电压和电流的乘积计算,但要考虑电流表的内耗。

如电压表和电流表采用图1所示的接法,则应扣除电流表的内耗。

设电流表的内阻为RmA(Ω),则可得电加热器单位时间放出的热量

kJ/s

3.干空气流量为

kg/s

4.水蒸汽流量为

kg/s

5.水蒸汽吸热量为

kJ/s

6.干空气吸热量为

7.计算举例

假定某一稳定工况的实测参数如下:

t0=8℃;tw=7.5℃;B=748.0毫米汞柱

t1=8℃;t2=240.3℃;τ=69.96秒/10升;

Δh=16毫米水柱;W=41.84瓦

查焓湿图得d=6.3克/公斤干空气(相对湿度

=94%)

千卡/秒

公斤/秒

公斤/秒

千卡/秒

千卡/(公斤·℃)

六、比热随温度的变化关系

假定在0—300℃之间,空气的真实定压比热与温度之间近似地有线性关系,则由t1到t2的平均比热为:

因此,若以

为横坐标,

为纵坐标(如图三),则可根据不同的温度范围内的平均比热确定截距a和斜率b,从而得出比热随温度变化的计算式。

图三

七、实验报告要求

1.简述实验原理,简介实验装置和测量系统并画出简图。

2.实验原始数据记录表,计算过程及计算结果。

3.将实验结果表示在cpm——tm的坐标图上,用(6)和(7)式确定A、B,确定平均定压比热容与平均温度的关系式(5)和定压比热容与温度的关系式(4)。

4.对实验结果进行分析和讨论。

八、注意事项

1.切勿在无气流通过的情况下使加热器投入工作,以免引起局部过热而损坏比热容仪本体。

2.输入加热器的电压不得超过220伏,气体出口最高温度不得超过300℃。

3.加热和冷却要缓慢进行,防止比热容仪本体和温度计因温度骤升或骤降而损坏。

4.停止实验时,应先切断电加热器,让风机继续工作十五分钟左右。

九、思考题

1.如何在实验方法上考虑消除电加热器热损失的影响?

2.用你的实验结果说明加热器的热损失对实验结果的影响怎样?

3.测定湿空气的干、湿球温度时,为什么要在湿式流量计的出口处而不在大气中测量?

4.在本装置中,如把湿式流量计连接位置改在比热容仪器的出口处,是否合理?

 

实验二二氧化碳p―v―T关系测定及临界状态观察

一、实验目的

1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。

2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。

3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。

4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。

二、实验内容

1、测定CO2的p-v-t关系。

在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。

2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,并与图四中的ts-ps曲线比较。

3、观测临界状态

(1)临界状态附近气液两相模糊的现象。

(2)气液整体相变现象。

(3)测定CO2的pc、vc、tc等临界参数,并将实验所得的vc值与理想气体状态方程和范德瓦尔方程的理论值相比教,简述其差异原因。

三、实验设备及原理

整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。

图一试验台系统图

图二试验台本体

试验台本体如图二所示。

其中1—高压容器;2—玻璃杯;3—压力机;4—水银;5—密封填料;6—填料压盖;7—恒温水套;8—承压玻璃杯;9—CO2空间;10—温度计。

对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p、v、t之间有:

F(p,v,t)=0

或t=f(p,v)

(1)

本实验就是根据式

(1),采用定温方法来测定CO2的p-v-t关系,从而找出CO2的p-v-t关系。

实验中,压力台油缸送来的压力由压力油传入高压容器和玻璃杯上半部,迫使水银进入预先装了CO2气体的承压玻璃管容器,CO2被压缩,其压力通过压力台上的活塞杆的进、退来调节。

温度由恒温器供给的水套里的水温来调节。

实验工质二氧化碳的压力值,由装在压力台上的压力表读出。

温度由插在恒温水套中的温度计读出。

比容首先由承压玻璃管内二氧化碳柱的高度来测量,而后再根据承压玻璃管内径截面不变等条件来换算得出。

四、实验步骤

1、按图一装好实验设备,并开启实验本体上的日光灯(目的是易于观察)。

2、恒温器准备及温度调节:

(1)、把水注入恒温器内,至离盖30~50mm。

检查并接通电路,启动水泵,使水循环对流。

(2)、把温度调节仪波段开关拨向调节,调节温度旋扭设置所要调定的温度,再将温度调节仪波段开关拨向显示。

(3)、视水温情况,开、关加热器,当水温未达到要调定的温度时,恒温器指示灯是亮的,当指示灯时亮时灭闪动时,说明温度已达到所需要恒温。

(4)、观察温度,其读数的温度点温度设定的温度一致时(或基本一致),则可(近似)认为承压玻璃管内的CO2的温度处于设定的温度。

(5)、当所需要改变实验温度时,重复

(2)~(4)即可。

注:

当初使水温高于实验设定温度时,应加冰进行调节。

3、加压前的准备:

因为压力台的油缸容量比容器容量小,需要多次从油杯里抽油,再向主容器管充油,才能在压力表显示压力读数。

压力台抽油、充油的操作过程非常重要,若操作失误,不但加不上压力,还会损坏试验设备。

所以,务必认真掌握,其步骤如下:

(1)关压力表及其进入本体油路的两个阀门,开启压力台油杯上的进油阀。

(2)摇退压力台上的活塞螺杆,直至螺杆全部退出。

这时,压力台油缸中抽满了油。

(3)先关闭油杯阀门,然后开启压力表和进入本体油路的两个阀门。

(4)摇进活塞螺杆,使本体充油。

如此交复,直至压力表上有压力读数为止。

(5)再次检查油杯阀门是否关好,压力表及本体油路阀门是否开启。

若均已调定后,即可进行实验。

4、作好实验的原始记录:

(1)设备数据记录:

仪器、仪表名称、型号、规格、量程、等。

(2)常规数据记录:

室温、大气压、实验环境情况等。

(3)测定承压玻璃管内CO2质量不便测量,而玻璃管内径或截面积(A)又不易测准,因而实验中采用间接办法来确定CO2的比容,认为CO2的比容

与其高度是一种线性关系。

具体方法如下:

a)已知CO2液体在20℃,9.8MPa时的比容

(20℃,9.8Mpa)=0.00117M3·㎏。

b)实际测定实验台在20℃,9.8Mpa时的CO2液柱高度Δh0(m)。

(注意玻璃管水套上刻度的标记方法)

c)∵

(20℃,9.8Mpa)=

其中:

K——即为玻璃管内CO2的质面比常数。

所以,任意温度、压力下CO2的比容为:

(m3/kg)

式中,Δh=h-h0

h——任意温度、压力下水银柱高度。

h0——承压玻璃管内径顶端刻度。

5、测定低于临界温度t=20℃时的等温线。

(1)将恒温器调定在t=20℃,并保持恒温。

(2)压力从4.41Mpa开始,当玻璃管内水银柱升起来后,应足够缓慢地摇进活塞螺杆,以保证等温条件。

否则,将来不及平衡,使读数不准。

(3)按照适当的压力间隔取h值,直至压力p=9.8MPa。

(4)注意加压后CO2的变化,特别是注意饱和压力和饱和温度之间的对应关系以及液化、汽化等现象。

要将测得的实验数据及观察到的现象一并填入表1。

(5)测定t=25℃、27℃时其饱和温度和饱和压力的对应关系。

6、测定临界参数,并观察临界现象。

(1)按上述方法和步骤测出临界等温线,并在该曲线的拐点处找出临界压力pc和临界比容

c,并将数据填入表1。

(2)观察临界现象。

a)整体相变现象

由于在临界点时,汽化潜热等于零,饱和汽线和饱和液线合于一点,所以这时汽液的相互转变不是象临界温度以下时那样逐渐积累,需要一定的时间,表现为渐变过程,而这时当压力稍在变化时,汽、液是以突变的形式相互转化。

b)汽、液两相模糊不清的现象

处于临界点的CO2具有共同参数(p,v,t),因而不能区别此时CO2是气态还是液态。

如果说它是气体,那么,这个气体是接近液态的气体;如果说它是液体,那么,这个液体又是接近气态的液体。

下面就来用实验证明这个结论。

因为这时处于临界温度下,如果按等温线过程进行,使CO2压缩或膨胀,那么,管内是什么也看不到的。

现在,我们按绝热过程来进行。

首先在压力等于7.64Mpa附近,突然降压CO2状态点由等温线沿绝热线降到液区,管内CO2出现明显的液面。

这就是说,如果这时管内的CO2是气体的话,那么,这种气体离液区很接近,可以说是接近液态的气体;当我们在膨胀之后,突然压缩CO2时,这个液面又立即消失了。

这就告诉我们,这时CO2液体离气区也是非常接近的,可以说是接近气态的液体。

既然,此时的CO2既接近气态,又接近液态,所以能处于临界点附近。

可以这样说:

临界状态究竟如何,就是饱和汽、液分不清。

这就是临界点附近,饱和汽、液模糊不清的现象。

7、测定高于临界温度t=50℃时的定温线。

将数据填入原始记录表1。

五、实验结果处理和分析

1、按表1的数据,如图三在p-v坐标系中画出三条等温线。

2、将实验测得得等温线与图三所示的标准等温线比较,并分析它们之间的差异及原因。

3、将实验测得的饱和温度与压力的对应值与图四给出的ts-ps曲线相比较。

CO2等温实验原始记录表1

t=20℃

t=31.1℃(临界)

t=50℃

p

(Mpa)

Δh

v=

Δh/K

现象

p

(Mpa)

Δh

v=

Δh/K

现象

p

(Mpa)

Δh

v=

Δh/K

现象

进行等温线实验所需时间

分钟

分钟

分钟

图三标准曲线

4、将实验测定的临界比容

c与理论计算值一并填入表2,并分析它们之间的差异及其原因。

 

临界比容Vc[m3/Kg]表2

标准值

实验值

Vc=RTc/Pc

Vc=3/8(RTc/Pc)

0.00216

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1