手机电路原理通俗易懂.docx
《手机电路原理通俗易懂.docx》由会员分享,可在线阅读,更多相关《手机电路原理通俗易懂.docx(73页珍藏版)》请在冰豆网上搜索。
手机电路原理通俗易懂
第二部分原理篇
第一章手机的功能电路
ETACS、GSM蜂窝手机就是一个工作在双工状态下的收发信机。
一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)与电源(PowerSupply)。
数字手机从电路可分为,射频与逻辑音频电路两大部分。
其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。
见图1-1所示
从印刷电路板的结构一般分为:
逻辑系统、射频系统、电源系统,3个部分。
在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。
图1-1手机的结构框图
注:
双频手机的电路通常就是增加一些DCS1800的电路,但其中相当一部分电路就是DCS与GSM通道公用的。
第二章射频系统
射频系统由射频接收与射频发射两部分组成。
射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。
手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。
手机电路中不管就是射频接收系统还就是射频发射系统出现故障,都能导致手机不能进入GSM网络。
对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其她系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。
当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分就是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。
而射频电路则包含接收机射频处理、发射机射频处理与频率合成单元。
第一节接收机的电路结构
移动通信设备常采用超外差变频接收机,这就是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。
放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上就是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,这就是难于做到的。
超外差接收机则没有这种问题,它将接收到的射频信号转换成固定的中频,其主要增益得自于稳定的中频放大器。
手机接收机有三种基本的框架结构,一就是超外差一次变频接收机,二就是超外差二次变频接收机,三就是诺基亚的直接变换线性接收机。
我们通常讲的手机电路结构主要就是指射频电路的结构,不同厂家的手机的射频电路结构有一些差异,但不同手机厂家的手机中的逻辑音频电路结构却大都一致,同一手机厂家出品的手机的射频电路也基本土就是一致的。
超外差变频接收机的核心电路就就是混频器,我们可以根据手机接收机电路中混频器的数量来确定该接收机的电路结构。
一、超外差一次变频接收机
接收机射频电路中只有一个混频电路的,属于超外差一次变频接收。
超外差一次变频接收机的原理方框图如图⒍2所示、在瞧手机的接收机射频方框图时,应注意该接收机中有几次频率变换(混频电路),如图1-2所示。
图1-2超外差一次变频接收机框图
摩托罗拉手机(包括数字手机与模拟手机)的接收机基本上就是图1-2所示的框架结构。
摩托罗拉的接收射频结构除从图1-2能明显瞧出来的特点外,还有一个特点,那就就是用于解调的接收中频VCO都就是接收中频信号的2倍频。
对超外差一次变频接收机可以这样描述:
天线感应到的无线蜂窝信号经天线电路与射频滤波电路进入接收机电路,接收到的信号首先由低噪声放大器进行放大;放大后的信号再经射频滤波后,被送到混频电路;在混频电路中,射频信号与接收VCO信号进行混频,得到接收中频信号;中频信号经中频放大后,在中频处理模块内迸行RXI/Q解调,解调所用的参考信号来自接收中频VCO。
该信号首先在中频处理电路中被二分频,然后与接收中频信号进行混频,得到67、707kHz的RXI/Q信号。
RXI/Q信号在逻辑音频电路中经GMSK解调、去分间插入、解密、信道解码、PCM解码等处理,还原出模拟的话音信号,推动受话器发出声音。
二、超外差二次变频接收机
若接收机射频电路中有两个混频电路,则该接收机就是超外差二次变频接收机。
超外差二次变频接收机的方框图如图1-3所示。
与一次变频接收机相比,二次变频接收机多了一个混频器及一个VCO,这个VCO在一些电路中被叫做IFVCO或VHFVCO。
诺基亚手机、爱立信手机、三星、松下与西门子等手机的接收机电路基本上都属于这种电路结构。
在这种接收机电路中,若RXI/Q解调就是锁相解调,则解调用的参考信号通常都来自基准频率信号。
图1-3超外差二次变频接收机框图
在图1-2、图1-3中,解调电路部分也有VCO,该处的VCO信号就是用于解调,作参考信号。
而且该VCO信号通常来自两种方式:
一就是来自基准频率信号,如诺基亚的8110手机第二接收中频就是13MHz,基准频率信号13MHz也提供给解调器用于解调;另一种就是来自专门的中频VCO,如摩托罗拉GSM328手机的接收中频就是153MHz,该VCO就是306MHz,,306MHz的VCO信号在中频处理电路中被二分频得到153MHz用于接收机解调。
接收电路将天线感应到的高频己调信号放大,经两级(或一级)变频将频率很高的射顿信号转变成频率较低的带调制信号的固定中频信号,然后解调出原来的调制音频信号或数据信号,并将其送到音频处理电路或者逻辑电路,以完成相应的各种功能。
对超外差二次变频接收机可以这样描述:
天线感应到的无线蜂窝信号经天线电路与射频滤波电路进入接收机电路,接收到的信号首先由低噪声放大器进行放大;放大后的信号再经射频滤波后,被送到混频电路;在混频电路中,射频信号与接收VCO信号进行混颇,得到接收第一中频信号;接收第一中频信号被送到接收第二混频电路,与接收第二本机振荡信号混频,得到接收第二中频(接收第二中频来自VHFVCO电路);接收第二中频信号经中频放大后,在中频处理模块内进行RxI/Q解调,(解调所用的参考信号来自接收中频VCO,该信号首先在中频处理电路中被二分频,然后与接收中频信号进行混频,得到67、707MHz的RXI/Q信号;RXI/Q信号在逻辑音频电路中经GMSK解调、去分间插入、解密、信道解码、PCM解码等处理,还原出模拟的话音信号,推动受话器发出声音。
三、直接变换的接收机
早期的手机接收机电路结构基本上都分别属于上述两种电路结构形式,但随着新型手机的面世,出现了一种新的信号接收机电路结构——直接变换的线形接收机(DirectConversionLinearReceiver),如诺基亚的8210手机。
这种接收机的电路结构如图1-4所示。
图1-4直接变换的接收机方框图
从一次变频接收机与二次变频接收机的方框图可以瞧,RXI/Q信号都就是从解调电路输出的,但在直接变换线形接收机中,混频器输出的就就是RXI/Q信号了。
不管电路结构怎样变,都可以瞧到它们的一些相似之处:
信号就是从天线到底噪声放大器,再到频率变换单元,最后到语音处理电路。
所以在手机接收机电路中,主要有以下几个不同的功能电路,组合而成。
接收天线(ANT):
作用就是将高频电磁波转化为高频信号电流。
双工滤波器:
作用就是将接收射频信号与发射射频信号分离,以防止强的发射信号对接收机造成影响。
双工滤波器包含一个接收滤波器与一个发射滤波器,它们都就是带通射频滤波器。
天线开关:
作用同双工滤波器,由于GSM手机使用了TDMA技术,接收机与发射机间歇工作,天线开关在逻辑电路的控制下,在适当的时隙内接向接收机或发射机通道。
射频滤波器:
就是一个带通滤波器,只允许接收频段的射频信号进入接收机电路。
低噪声放大器(LNA):
作用就是将天线接收到的微弱的射频信号进行放大,以满足混频器对输入信号幅度的需要,提高接收机的信噪比。
混频器(MIx):
就是一个频谱搬移电路,它将包含接收信息的射频信号转化为一个固定频率的包含接收信息的中频信号。
它就是接收机的核心电路。
中频滤波器:
中频滤波器在电路中只允许中频信号通过,它在接收机中的作用比较重要。
中频滤波器防止邻近信道的干扰,提高邻近信道的选择性。
中频放大器:
中频放大器主要就是提高接收机的增益,接收机的整个增益主要来自中频放大。
射频VCO:
在不同的手机电路中的英文缩写不同,常见的有RXVCO(诺基亚、爱立信及其她部分手机常见)、PFVCO(三星手机常见)、UHFVCO(诺基亚手机常见)、MAINVCO(摩托罗拉手机常见)等。
它给接收机提供第一本机振荡信号;给发射上变频器提供本机振荡信号,得到最终发射信号;给发射交换模块提供信号,经处理得到发射参考中频信号。
中频VCO:
通常被称为IFVCO或VHFVCO,若接收有第二混频器的话,给接收机的第二混频器提供本机振荡信。
在一些手机电路中,给RXI/Q解调电路提供参考振荡信号。
语音处理部分:
语音处理部分包含几个方面,首先RXI/Q信号在逻辑电路中进行GSMK解调,然后进行解密、去分间插入等处理,然后将这个信号进行PCM解码,还原出模拟的话音信号(参见接收音频)。
第二节接收机的功能电路
一、天线及天线电路
话机本身的天线一般为螺旋鞭状天线或短鞭状天线。
移动台的天线具有足够宽的工作频带,它工作于全部的收发信道,基本上所有的蜂窝话机都可使用内接与外接天线。
天线分为发射天线与接收天线,将高频电流转化为高频电磁波传送出去的导体被称为发射天线;将高频电磁波转化为高频信号电流的导体被称为接收天线。
在一些蜂窝电话机中,天线进来常采用双工滤波器(选频电路),天线与双工器都就是无源器件。
双工器包括发射滤波器与接收滤波器,它们都就是带通滤波器,双工器有3个端口——公共端天线接口、发射输出端及接收输入端。
天线及双工滤波器与接收机发射机的连接如图1-15所示。
发射信号总就是比接收信号强,而强信号对弱信号有抑制作用,会使接收电路被强信号阻塞,使接收的弱信号被淹没,引起接收灵敏度下降。
所以接收滤波器就就是阻止发射信号串人接收电路,并拒收天线接收到的接收频段以外的信号;而发射滤波器则拒绝,接收频率段的噪声功率及发射调与信号等。
当然,也有一些话机使用接收与发射分离的滤波器。
图1-15
图1-16所示的就是一个带开关电路的双工滤波器。
图中VC1与VC2就是控制端;GSM-TX、GSM-RX分别代表GSM的接收、发射端口;DCS-TX、DCS-RX分别代表1800MHz收发信机的接收、发射端口。
图1-16
从上面的内容可以瞧到,在手机电路中寻找天线电路,比较重要的就就是天线的图形符号Y与天线的表示字母“ANT”。
在天线电路中,除了双工滤波器,还有天线开关电路,模拟手机中的天线开关电路用于内接天线与外接天线的转换。
由于数字手机采用了TDMA技术,它以不同的时段来区分用户,且GSM手机的接收机与发射机就是间隙工作的,所以在数字手机中,天线开关通常用于接收射频信号与发射射频信号通道的转换。
在一些双频手机中,天线开关还用于GSM信号与DCS信号的切换。
8210手机的双工滤波器中就包含了开关电路,VC1与VC2为控制信号。
—些手机的天线电路只采用天线开关,滤波器被分别放在接收射频电路与发射射频电路当中,如GD90的天线开关与cd928的天线开关电路如图1-18所示。
在图1-17,9脚接天线,5、7脚输出射频信号到接收机电路,1、11脚的信号来自发射机功率放大器。
用示波器在天线开关的控制端可检测到控制信号的脉冲波形。
控制天线开关的信号来自逻辑电路,同时这些信号也控制发射机、接收机电路。
图1-17GD90的天线开关电路
二、低噪声放大器
低噪声放大器(LNA)被用来将天线收到的微弱的无线蜂窝信号,放大到混频器所需要的幅度。
如果低噪声放大器损坏,通常会造成手机接收信号差的故障。
低噪声放大器通常又称为前置射频放大器,前置射频放大器就是移动通信接收机最常用的一种小信号放大器,由于此类放大器常用低噪声器件来实现,故又称为低噪声放大器。
在第一级高频放大电路设置低噪声放大器可以改善接收机的总噪声系数,同时高频放大器可防止RXVCO信号从天线路径辐射出去。
图1-18所示的就是一般LNA的两种形式(参见三极管部分)。
图1-18
双工滤波器的输出信号被送人低噪声放大器放大。
Q1、Q2与周边元件构成一低噪声放大器,这就是一个带负反馈的共发射极电路,又就是一个宽带放大器,它用以对微弱的射频信号进行放大并弥补射频滤波器带来的插入损耗。
在图1-18中,Q1的发射极旁路电容C3对该放大器的增益影响很大,它可减小R4对信号的负反馈影响。
该电路中,Q1的直流工作点主要由R1与R2决定,属固定分压偏置。
在图1-18中,Q2的直流工作点由R6、R5决定,为集电极反馈偏置,同时R5也就是负反馈元件,C5与R7的作用与图中的C3、R4一样。
实际上,Q1、Q2电路就是一个宽带高频小信号放大器。
对这一位置的高频放大器中的三极管,要求其截止频率高,放大倍数大,噪声系数小。
第一级信号很小,工作点通常设得比较低,同时加人电流负反馈,则可以减小噪声。
前面我们讲到的就是一些分离元件的低噪声放大电路。
在实际工作中,还常会遇到低噪声放大电路被集成在一块芯片中的情况。
诺基亚6110、6150手机的低噪声放大器就就是被集成起来的,它们一个就是单频手机,一个就是双频手机,但我们也能很容易找到低噪声放大器的输人端:
一就是从天线电路去找,瞧信号通过交流通道到集成电路的什么端口;另一个较为快速的方法,就就是查瞧集成电路各引脚的标号(英文缩写),如图1-19所示。
图1-19手机的射频处理模块
图1-19就是6110手机的射频处理模块,N500的25脚上标有“LNAIN”的字。
、LNA就就是低噪声放大器(I,owNoiseAmplifier)的英文缩写,IN表示输入。
所以我们断定N500的25脚线路就就是LNA的输人,同时,也可找到LNA的控制信号端一下26脚,26脚上标有“LNAAGC”,LAN表示低噪声放大器,AGC表示自动增益控制(AutoGaincontrol)。
在进行低噪声放大电路的查找分析时,应注意一个信号——启动控制信号(RX-ON或RX-EN)。
RX-EN就是接收机启动控制信号,TX-EN就是发射机启动控制信号。
从前面的系统知识我们知道,数字手机由于采用了TDMA技术,故接收机与发射机不同时工作,RX-EN与TX-EN信号就是符合TDMA规则的脉冲控制信号,当RX-EN为高电平时,TX-EN为低电平,接收机工作;当RX-EN为低电平时,TX-EN为高电平,发射机工作。
这一信号通常供给低噪声放大器的输入端,以作为低噪声放大器的偏压,如cd928中的Q410的基极偏压,实际上就就是来自RX-EN。
由于手机集成度越来越高,故在瞧电路寻找RX-EN时也会有一定的难度。
爱立信788手机的RX-ON信号就就是送到射频处理模块U100的11脚。
在诺基亚手机电路中,通常瞧不到RX-ON或RX-EN,它就是以另外一种标识出现——RXPWR。
在低噪声放大器的输入端,通常用示波器可测到上述的控制信号,其波形如图1-20所示。
在观察接收启动控制信号时,会发现其波形在待机状态下有一定的规律:
当该信号稳定时,手机的工作电流通常在80rnA左右;当该信号闪烁时,手机的工作电流通常在20~50mA之间变化;当无该信号时,手机工作电流通常在8~12mA之间。
图1-20
有关资料:
放大器中的噪声就是由放大器中的元器件(包括管子、电阻等),内部载流子的不规则运动引起的。
它主要就是电路中电阻的热噪声与三极管(或场效应管)内部噪声,这些噪声实际上就是杂乱的无规则的变化电压或电流,故称为起伏噪声,起伏噪声的频率成分非常丰富,它的能量连续分布在很宽的频率范围内。
而放大器内部噪声主要有热噪声、散弹噪声、分配噪声与闪烁噪声等。
三、混频电路
混频电路又叫混频器(MIX)就是利用半导体器件的非线性特性,将两个或多个信号混合,取其差频或与频,得到所需要的频率信号。
在手机电路中,混频器有两个输入信号(一个为输入信号,另一个为本机振荡),一个输出信号(其输出被称为中频IF)。
在接收机电路中的混频器就是下变频器,即混频器输出的信号频率比输入信号频率低;在发射机电路中的混频器通常用于发射上变频,它将发射中频信号与UHFVCO(或RXVCO)信号进行混频,得到最终发射信号。
混频器就是超外差接收机的核心电路,如接收机的混频器出现故障,则无接收中频输出,造成手机无接收信号、不能上网等故障。
变频器的原理方框图如图1-21所示。
图1-21
当变频器的输出为信号频率与本振信号之与,且比信号频率高时,所用的变频器被称为上边带上变频。
如摩托罗拉8200系列的发射变频器,其发射中频为88MHz,以60信道为例,本机振荡信号为814MHz。
变频后得到902MHz的最终发射信号。
当变频器的输出信号为信号频率与本振信号之差,且比信号频率高时,所用的变频器被称为下边带上变频。
如诺基亚8110的发射变频器,其发射中频信号为116MHz,其本机振荡信号为1018MHz(60信道为例),变频后得到902MHz的最终发射信号。
混频器包括晶体管混频器、场效应管混频器、肖特基势垒二极管混频器以及集成混频器等。
1.晶体管混频器
晶体管混频器有多种电路形式。
其中双极型晶体管混频器可在共发射极电路基础上构成,信号与本振信号由基极输入,或信号由基极输人、本振信号由发射极输人。
两信号由基极输人的电路输入阻抗高,对本振而言,负载轻。
摩托罗拉双频手机cd928系列的接收混频器便为这种混频器。
如图1-22所示:
图1-22
2.二极管混频器
二极管混频器尽管存在损耗,但其噪声及杂波输出比晶体管混频器要少、诺基亚的GSM手机多采用这种混频器。
如8110的第一接收、发射混频器,该混频器的输人输出信号路径如图1-23所示(参见8110射频电路)。
图1-23
3.集成混频器
在早期的手机中,有的混频器单独使用一个集成组件,如今手机中的混频器多被集成在一个复合的射频处理或中频处理模块中。
集成混频器如诺基亚233的接收第一混频器为集成双平衡混频器,它由阻抗匹配网络、滤波器及混频管等组成,为双端平衡输人输出。
图1-24
在1-24中,低噪声放大器输出的射频信号,经一个平衡—不平衡转换,得到两个信号从N8的7、8脚输人;本机振荡信号则从N8的4、5脚输人;混频后得到的中频信号从N8的1、2脚输出。
图1-25
如今,越来越多的手机电路中的混频单元被集成在上复合电路中,如诺基亚6110与三星SGH-500的接收混频器,如图1-25所示。
要寻找混频电路就需掌握手机框架结构,在手机接收机电路中,如瞧到射频信号与VCO信号输人到同一个电路,则这个电路应就是混频电路(这就要求能辨别RXVCO电路)。
同时掌握MIX等英文缩写(如图1-25所示),以便于识别电路。
参见诺基亚6110、三星SGH-500、诺基亚6150射频电路。
四.中频放大器
接收机的中频放大器主要就是将混频器输出的信号进行大幅度提升,以满足解调电路的需要。
接收机的主要增益也来自中频放大器,中频放大器损坏常会造成手机接收差的故障。
移动通信接收机均要使用中频放大器。
中频放大器最主要的作用就是:
获取高增益:
与射频放大部分相比,由于中频频率固定,并且频率较低,可以很容易地得到较高的增益,因而可以为下一级提供足够大的输人。
提高选择性:
接收机的邻近频率选择性一般由中频放大器的通频带宽度决定。
对于中频放大器,不仅需要得到高的增益、好的选择性,还要有足够宽的通频带与良好的频率响应、大的动态范围等。
而接收机的邻近信道选择性一般由中频放大器的通频带宽度决定,由于中频信号为单一的固定频率,其通频带可最大限度地做得很小,以提高相邻信道选择性。
在实际工程上,一般采用多级放大器,并使每级实现某一技术要求,就电路形式而言,第一级中频放大器多采用共发射极电路,最后一级中频放大器多采用射极输出电路。
不论接收机采用一次或二次变频技术,中频放大器总就是位居下变频(即混频)之后。
为避免镜频干扰,提高镜频选择性,接收机通常采用降低第一本机振荡频率、提高第一中频频率与多次变频的方法,使信号频谱逐渐由射频搬移到较低频率上。
分离元件的中频放大器电路形式与低噪声放大器的电路形式很相似,也就是一个共发射极电路,只就是它们工作的频点不一样。
摩托罗拉手机中通常使用分离元件的中频放大器,其她手机的中频放大器通常都就是在一个集成电路中。
图1-26就是cd928手机的中频放大器。
-图1-26cd928中频放大器
中频放大器的电路形式与低噪声放大器的电路形式差别不大,但它们工作的频段不同。
低噪声放大器就是一个宽带放大器,而中频放大器就是一个窄带放大器。
中频放大电路的信号通路与偏压、电源的查找与低噪声放大器的方法一样,读者可自行分析。
在集成的中频放大器中查找信号通道等相对困难些,它不就是一个单一的电路,通常存在于一个复合电路中,尽管如此,它总就是有规律可寻的。
图1-27
(一)所示的就是GD90的中频电路,从手机的电路结构知识可以知道:
中频放大器总就是置于混频后,所以只要掌握混频电路,则较容易找到中频放大器。
请仔细观察图1-27
(一)与图1-27
(二)中的黑色方块。
图1-27
(一)
图1-27
(二)
图1-27
(一)所示的就是GD90的中频放大器查找示意图。
根据手机电路结构可知,中频放大器位于混频器之后(输出端后);我们知道,混频器的英文缩写就是MIX。
那么,在图1-27
(一)中,可以瞧到集成电路的42、43脚有MIXOUT的字样,MIX代表混频器,OUT表示输出,结合前面提到的知识,则中频放大器可以从这个集成电路的42、43脚开始查找。
跟着线路,可以发现,集成电路29、30脚上有IFIN的字样(IF代表中频IN就是输人),所以29、30脚就是中频放大器的输人端。
注!
图1-27
(一)与图1-27
(二)都就是集成的中频处理电路,要识别它们就需从手机的电路结构以及手机电路中的英文缩写去分析(请注意图中所指的英文缩写)。
诺基亚8810、232中频放大器查找示意图
五.解调电路
接收机的解调电路就是把包含在接收中频信号中的语音信息或各种信令信息还原出来,得到中心频率为67、707kHz的RXI/Q信号。
在接收机电路中,解调电路输出的RXI/Q信号就是检修接收机电路的一个关键信号。
在移动通信中,常用的解调技术有锁相解凋器、正交鉴频解调器等。
PLL(锁相环)可以跟踪输人信号,它可以用作解调。
图1-28为一个锁相解调器的方框图。
摩托罗拉87系列与928系列手机采用的就就是锁相解调器87的锁相解调器中鉴频器的参考频率由216Mz的振荡器提供,而928的锁相解调器的参考信号则来自430MHz的振荡器。
鉴相器通过对输入的两个信号的相位比较,输出一跟踪调制信号的低频信号,通过低通滤波器滤去高频噪声,即得到解调输出。
图1-28
图1-29为正交鉴频器的原理框图。
在正交鉴频器中,相移网络将频率的变化变换为相位的变化,乘法器将相位的变化变换为电压的变化。
将调频信号与其移相信号相乘,通过低通滤波器将乘法器的输出信号中的高频成分滤出,就得到了解调信号。
通常,在现代的通信设备的电路中,除