复合材料术语大全.docx

上传人:b****4 文档编号:24632245 上传时间:2023-05-29 格式:DOCX 页数:39 大小:46.81KB
下载 相关 举报
复合材料术语大全.docx_第1页
第1页 / 共39页
复合材料术语大全.docx_第2页
第2页 / 共39页
复合材料术语大全.docx_第3页
第3页 / 共39页
复合材料术语大全.docx_第4页
第4页 / 共39页
复合材料术语大全.docx_第5页
第5页 / 共39页
点击查看更多>>
下载资源
资源描述

复合材料术语大全.docx

《复合材料术语大全.docx》由会员分享,可在线阅读,更多相关《复合材料术语大全.docx(39页珍藏版)》请在冰豆网上搜索。

复合材料术语大全.docx

复合材料术语大全

复合材料术语大全

热压罐

autoclave一种为固化树脂基复合材料制品按要求可提供加热和加压环境的密闭设备。

热压罐属于高压容器,通常由罐体、真空泵、压气机、贮气罐、操纵柜等组成。

罐内的温度由罐内的电加热装置提供,压力由压气机通过贮气罐进行充压。

通常情形利用空气,只在较高温度下利用氮气、二氧化碳等气体。

热压罐成型

autoclavemoulding热压罐成型是将复合材料毛胚、蜂窝夹芯结构或胶接结构用真空袋密封在模具上,置于热压罐中,在真空(或非真空)状态下,通过升温→加压→保温→降温和卸压进程,使其成为所需要求的先进复合材料及其构件的成型方式之一。

用热压罐成型的复合材料构件多应用于航空航天领域等的主承力和次承力结构。

该成型工艺模具简单,制件密实,尺寸公差小,间隙率低。

可是该方式能耗大,辅助材料多,本钱高。

热塑性复合材料缠绕成型

filamentwindingofthermoplasticcomposite是热塑性复合材料的成型方式之一。

该方式是将已浸有热塑性基体树脂的纤维束或带缠绕在芯模上,同时用高能束流对缠绕点现场实施快速加热熔融,随着缠绕进程,预浸丝束边熔融边硬化。

这种跟踪缠绕丝束熔融、硬化的进程是持续自动的,一样只适合于制作旋转体类的制件。

该方式需要一个能产生高能束流的热源,经常使用的加热源有激光、热空气、红外线、微波等。

热塑性复合材料滚压成型

rollformingofthermoplasticcomposite是热塑性复合材料成型方式之一。

该方式是用预先加热到软化温度的热塑性预浸料层片持续通过滚压模具成型,进程类似于金属的滚压成型,可实现自动化持续生产,生产效率高,适合大量量生产。

热塑性复合材料拉挤成型

pultrusionofthermoplasticcomposite是热塑性复合材料成型方式之一。

该方式类似于热固性复合材料的拉挤成型,但浸渍工艺和模具与热固性复合材料拉挤成型方式不同。

热塑性复合材料拉挤设备要紧包括布纱装置、流态化床、加热模具、冷却模具、牵引机、操纵系统、切割系统等几部份。

一样用于生产杆、棒、管等型材;用织物增强时也可生产具有复杂截面的型材。

产品的力学性能和表面质量都较好,适合大量量生产。

热塑性复合材料成型

formingofthermoplasticcomposite是由热塑性预浸料制备热塑性复合材料及其制品的工艺进程。

与热固性复合材料成型工艺方式大体相同。

经常使用的成型方式有:

拉挤成型、注射成型、模压成型、热压罐/真空成型、缠绕成型、滚压成型、隔膜成型、热膨胀模成型等。

与热固性复合材料成型不同的是,热塑性复合材料成型进程基体树脂不发生化学转变,其成型进程一样可分为熔融、融合和硬化三个时期;已成型的制品经从头加热熔融后,还能够二次成型。

热塑性复合材料基体树脂的熔点大多在300-400℃,接近热分解温度,因此成型温度要严格操纵:

温度太低树脂不能充分熔融、融合和流动;温度太高树脂会氧化、分解。

熔融后要施加足够的压力,使预浸料层间充分接触,除去气泡,促使树脂流动,使树脂与纤维有良好的结合。

该方式要紧优势是:

制件冷却到玻璃化温度以下即可卸压出模,整个成型进程比热固性复合材料成型进程要短。

热塑性复合材料对模热压成型

matcheddiepress-formingofthermoplasticcomposite是热塑性复合材料成型方式之一。

该方式是用阴模和阳模在热压机上使已加热软化的热塑性预浸料层片复合成所需要求的制件。

为了取得均匀的压力和热传导,对模具的设计和加工要求很高,通常阴模用金属材料制成,阳模用耐热橡胶制成。

该方式操作方便,生产效率较高;但成型时树脂不易流动,易造成制件分层和纤维排列畸变等缺点。

热塑性复合材料橡胶垫热压成型

rubberpadpress-formingofthermoplasticcomposite是热塑性复合材料成型方式之一。

该方式是用一个橡胶垫对已加热软化的热塑性预浸料层片施压,使其紧贴于阳模外表面而成型。

其特点与对模热压成型大致相同;可达到足够高的成型压力,但橡胶垫必需耐较高的成型温度。

热塑性复合材料隔膜成型

diaphragmformingofthermoplasticcomposite是热塑性复合材料成型方式之一。

该方式是将热塑性预浸料层片夹在易脱模的可塑性变形的隔膜之间加热软化,再用气压使之紧贴模具而成型。

隔膜应能在成型温度范围内被拉伸,经常使用的有高塑性铝箔或聚酰亚胺薄膜。

热塑性复合材料液压成型

hydroformingofthermoplasticcomposite是热塑性复合材料成型方式之一。

该方式是用液压流体对已加热软化的热塑性预浸料层片施压,使其紧贴模具而成型。

液压流体用弹性膜密封使之不发生泄漏,并能够达到很高的压力,压力散布较均匀,工艺周期短。

热塑性复合材料热压罐/真空成型

autoclave/vacuumformingofthermoplasticcomposite是热塑性复合材料成型方式之一。

该方式是将热塑性预浸料层片两面贴上柔软的薄膜,置于模腔上方,加热到层片软化温度;然后腔内抽真空,外部施高压,使其贴合到模具上成型。

热塑性复合材料热塑成型

thermoformingofthermoplasticcomposite是指热塑性复合材料在加热条件的二次成型。

大多数热塑性基体是结晶型或半结晶型的,在结晶体熔点温度以下,结晶体熔融成流体,可进行塑性加工,冷却后重结晶成固体。

依照这种原理对热塑性复合材料实现二次加工。

一样是先压制成板材,然后在高温条件下把板材成型成符合要求的不同形状的制件。

成型方式有模压、轧制。

可成型帽型件、槽型件等。

离心浇注成型

centrifugalcastingmoulding是一种利用筒状模具旋转产生的离心力将纤维、树脂和填料均匀地喷射到旋转的模腔内形成管状坯件,然后再成型的方式。

也能够先将编织套、纤维毡或织物置于筒状模具内再喷射树脂形成坯件进行成型。

要紧设备为能旋转并可调剂转速的筒状模具和树脂喷射管。

该方式适合于制备筒状、管状和罐状的一类制件,其特点是制件壁厚均匀、外表光洁。

泡沫贮树脂成型

foamreserveresinmoulding是一种复合材料泡沫夹层结构的成型方式。

该方式是用刮涂法使树脂浸渍软质通孔泡沫塑料,两面铺贴织物铺层,在模具内用模压或其他方式加压使贮存于泡沫塑料中的树脂浸渍织物铺层,同时加热固化,制成夹层结构制件。

可手糊成型,也可在机械上持续制作。

该方式成型压力低,适合制造大型部件,但不能成型复杂制件。

机械加工[复]?

?

machining(composite)

是复合材料构件后加工的要紧方式之一,即用机械方式对已成型的复合材料制件进行的第二次加工,以知足装配或连接的需要。

经常使用机械加工方式有车、铣、钻、锯、抛光等。

纤维复合材料的机械加工会显现一些常规材料所没有的问题,如纤维硬而脆(或坚韧),使刀具磨损大;树脂基体韧且不导热,加工时产生的热量不易散发,使树脂易粘附刀具;层合板复合材料在加工时极易分层等。

应依照这些特点采取相应方法,如选择坚硬的金属合金刀具,选择合理的加工余量,制定专门的加工标准,加工时采取相应的润滑和冷却方法等。

另外对韧性好的高强度纤维复合材料(如PBO纤维、芳纶、超高分子量聚乙烯纤维复合材料)的机械加工,需要特殊的工具,以保证加工质量。

机械连接[复]?

?

mechanicaljoint(composite)

是复合材料连接方式之一,即用常规连接方式如铆接、螺钉连接、螺栓连接等将复合材料制件连接在一路形成整体结构的技术。

复合材料机械连接接头的强度取决于复合材料的挤压强度和金属紧固件的剪切强度。

机械连接的优势有连接强度高、传递载荷靠得住、抗剥离性好、易于分拆和从头组合。

要紧缺点是在复合材料制件上钻孔时会破坏部份纤维的持续性,易引发分层,致使制件强度下降。

因此在钻孔或装配时应按专门标准进行,机械连接要紧用于受力较大的部件的连接。

机械连接破坏形式[复]?

?

failuremoldofcompositejoint

复合材料机械连接的要紧破坏形式有挤压破坏、拉伸断裂、剪切和劈裂等。

机械连接的破坏形式与材料本身性能、载荷大小、纤维取向即铺层结构等有关。

热塑性复合材料的焊接[复]?

?

welding(fusionbonding)ofthermoplasticcomposite

是热塑性复合材料一种特有的连接方式,即不需要借助胶粘剂,仅靠复合材料表面的树脂熔融和融合连接在一路的方式,其接头的耐热性和耐化学性能与复合材料制件相同,载荷散布均匀。

焊接的工艺周期比胶结和机械连接短,易于自动化。

按加热方式可分为电阻加热焊接、涡流加热焊接、电磁波加热焊接(激光或微波)、超声波焊接、摩擦焊接和机械连接与焊接相结合的固紧件加热焊接等。

热塑性复合材料的胶接[复]?

?

adhesivebondingofthermoplasticcomposite

是热塑性复合材料连接方式之一,即用胶粘剂把制件粘接在一路。

胶接工艺分四步:

胶接表面处置、涂敷胶粘剂、加热(或加压)、胶粘剂固化(或硬化)。

胶接的载荷散布比机械连接均匀。

经常使用与热塑性复合材料树脂基体相同的树脂制成的薄膜作为热熔胶,其优势是接头与制件本身具有相同的耐热性和耐化学性能,工艺时刻短,薄膜可无穷期贮存。

不同种的热塑性树脂薄膜也可用作为热熔胶,例如用聚醚酰亚胺(PEI)薄膜作为聚醚醚酮(PEEK)复合材料的胶粘剂,相容性好、连接强度高,是一种很有前途的方式。

二次胶接[复]?

?

secondbonding(composite)

是指已固化了的两个或两个以上的不同复合材料制件,通过胶粘剂再次进行胶接固化的技术。

二次胶接工序包括被粘表面处置、涂敷胶粘剂(喷、刷或铺胶膜)、胶接件装配和固化等进程。

胶接质量除与胶粘剂性能、基体材质有关外,还取决于固化温度、固化时刻、固化压力及环境因素等。

胶接优势是不需要钻孔、可维持复合材料制件的结构完整性,同时可幸免钻孔引发应力集中和承载面积减小;耐疲劳性好;表面滑腻和密封性好;本钱低。

要紧缺点是强度分散性大,靠得住性低,接头剥离强度低。

一样只适用于载荷能力较小的部位,也可采纳混合连接方式,如胶-铆、胶-螺连接。

表面防护[复]?

?

surfaceprotectionofcomposite

为减缓复合材料的老化进程,延长制件的利用寿命,而在制件表面采取的防护方法。

表面防护的内容和方式很多,一般是在制件表面施加一层具有爱惜功能的涂层,起到防热、防湿、防雷电、防腐和耐磨等作用。

如在前沿迎风部位利用耐磨涂料,可抵御破坏性专门大的沙蚀和雨蚀;在有防静电要求的部位涂以防静电涂料等。

目前大多数涂料为环氧和聚氨酯涂料。

环氧附着力强,耐介质性能好,能与多种面漆配合利用。

聚氨酯涂料附着力强,硬度高,表面饱满光亮,具有耐油、耐热、耐湿、耐化学侵蚀、耐大气老化等优势,常作面漆利用。

热固性树脂基复合材料?

?

thermosettingresinmatrixcomposite

以热固性树脂为基体的复合材料,是目前复合材料用量最多的品种。

热固性树脂基体一样由树脂、固化剂与其他添加剂等组成,其树脂种类很多,经常使用的有酚醛树脂、糠醛树脂、不饱和聚酯树脂、环氧树脂、双马来酰亚胺树脂和聚酰亚胺树脂等。

热固性树脂基复合材料所用的增强体有玻璃纤维、碳纤维、芳纶等,也能够是各类纤维织物、粒状填料、片状增强体。

热固性树脂基复合材料的成型工艺,一样有手糊成型、缠绕成型、热压罐成型、模压成型、喷射成型、树脂传递模塑成型、反映式注射及挤出成型等。

热固性树脂由于加入的固化剂种类不同,其固化反映机理不同,致使固化后复合材料利用要求存在不同。

固化剂决定固化温度,而固化温度决定利用温度,依照固化温度的不同通常可分为低温固化(一样指室温)、中温固化(125±5℃)和高温固化(170℃以上)。

关于聚酰亚胺类的热固性树脂复合材料,固化温度多在200~350℃。

复合材料的利用温度与固化温度有关,一样利用温度高要求固化温度也高。

热固性树脂基复合材料比强度和比模量高,耐疲劳与减震性好,耐烧蚀性与阻燃性好,介电性也好。

其应用普遍,如用于交通运输工业、机械制造工业、建筑业、化工与电器工业等领域。

除聚酯树脂复合材料普遍用于制造日用工业品外,环氧树脂复合材料、聚酰亚胺复合材料要紧用于航空航天工业。

室温固化树脂基复合材料?

?

roomtemperaturecuringresinmatrixcomposite

可在室温下固化成型的树脂基复合材料。

经常使用树脂有不饱和聚酯和环氧树脂。

前者一样以苯乙烯等烯类单体为交联剂,以过氧化环己酮等为引发剂,在萘酸钛等增进剂作用下进行固化;后者一样为双酚A型环氧树脂,相应的固化剂有脂肪族多元胺等。

制品具有较好的物理、化学和机械性能,但一样只能在室温或稍高温度下利用。

室温固化复合材料工艺简单,无需加热设备,常采纳接触压成型和喷射成型,适于制造大型结构件(如车身、船体等)及对耐湿性无太高要求的制件。

中温固化树脂基复合材料?

?

intermediatetemperaturecuringresinmatrixcomposite

可在中温(80~120℃)下固化成型的树脂基复合材料。

经常使用树脂有不饱和聚酯和环氧树脂。

前者采纳过氧化苯甲酰叔丁酯等中温下可分解的引发剂,后者主若是双酚A型环氧树脂,相应的固化剂有咪唑及其衍生物等。

这种复合材料具有良好的力学性能和化学稳固性,可在中温或较高温度下利用,各类性能高于室温固化树脂基复合材料而工艺又比高温固化简单。

经常使用成型方式有接触压成型、模压成型、缠绕成型、拉挤成型、喷射成型、反映性注射成型等。

高温固化树脂基复合材料?

?

hightemperaturecuringresinmatrixcomposite

可在高温(一样指170℃以上)下固化成型的树脂基复合材料。

经常使用树脂有酚醛和环氧树脂。

前者包括两类:

热塑性酚醛树脂采纳六亚甲基四胺(乌洛托品)固化剂,热固性酚醛树脂固化温度约为170℃。

酚醛树脂的高温固化需要在高压下进行。

环氧树脂高温固化剂有芳香胺,如DDM、DDS、MPSA,二元酸酐,如顺丁烯二酸酐、邻苯二酸酐和双氰胺等。

高温固化树脂基体结构紧密,热稳固性好、强度高、耐化学侵蚀性和耐大气老化性能优良,而且预浸料具有较长的适用期。

可是工艺条件复杂,需要高温加热设备。

成型方式有接触压成型、缠绕成型、模压成型和热压罐成型等。

不饱和聚酯树脂基复合材料?

?

unsaturatedpolyesterresinmatrixcomposite

以不饱和聚酯树脂为基体的复合材料。

不饱和聚酯是不饱和二元酸及饱和二元酸与二元醇的缩聚物,是目前用量最大的复合材料基体树脂,大多以玻璃纤维及其制品为增强体。

这种复合材料综合性能优良,有较高的强度和良好的耐化学侵蚀、介电及透波性能,价钱低廉;可是耐热性较低,制品收缩率大。

其成型工艺优良,可在常温常压下采纳多种方式成型,如接触压成型、模压成型、缠绕成型、拉挤成型、喷射成型及反映性注射成型等,其中接触压成型专门适合大型部件的制造。

不饱和聚酯树脂复合材料作为绝缘、耐侵蚀的结构材料普遍应用于机械制造、交通运输、建筑装饰、石油化工、电子电器,如风机叶片、船体、车身、贮缸、管道、电路板、雷达罩等。

环氧树脂基复合材料?

?

epoxyresinmatrixcomposite

以环氧树脂为基体的复合材料。

环氧树脂分子中一样含有两个以上环氧基团,按分子结构不同可分为缩水甘油醚、缩水甘油酸、缩水甘油酯和脂肪族、脂环族环氧树脂等类型;其固化剂种类有很多,要紧有多元脂肪酸酐及芳香酸酐、叔胺类和某些低聚物等,依照要求可选择不同固化体系。

增强材料要紧有玻璃纤维、碳纤维、芳纶及其制品等。

这种复合材料具有较高的强度与模量和良好的尺寸稳固性、耐化学侵蚀性和耐霉菌性。

耐热性与固化剂有关,一样介于酚醛树脂和不饱和聚酯之间。

环氧树脂对各类纤维有良好的浸润性和粘附性,成型工艺性好,可通过选择不同的树脂固化体系实现室温、中温、高温固化,固化时无挥发分、孔隙率低、收缩率小。

通常采纳接触压成型、模压成型、热压罐成型、缠绕成型、RTM成型、反映式注射成型和挤出成型等。

环氧树脂基复合材料多为高性能复合材料,普遍应用于航空、航天、机械、电器、化工等工业领域。

多官能度环氧树脂(基)复合材料?

?

multiifunctionalepoxyresinmatrixcomposite

是环氧树脂基复合材料的一种。

所采纳的树脂基体为多官能度环氧树脂,即该类环氧树脂平均每一个分子中含有至少三个环氧基团,如AGF-90为三官能团环氧树脂,AG-80为缩水甘油胺类四官能度环氧树脂,其特点是粘度低,活性大,交联密度高,对常见的各类增强纤维如玻璃纤维、碳纤维及有机纤维等具有良好的浸润性与粘附性。

固化剂通常最好选胺类和酸酐类,尤其以芳香胺如DDM、DDS适合。

这种复合材料具有较高的耐热性和力学性能,并具有良好的耐侵蚀性、耐候性和介电性能等。

缺点是较脆,常需加入增韧剂或其他树脂混用。

经常使用的成型方式与环氧树脂基复合材料大体相同。

环氧酚醛树脂基复合材料?

?

epoxyphenolicresincomposite

以环氧酚醛树脂为基体的复合材料。

环氧酚醛树脂是低分子量线性酚醛树脂在碱性催化剂作用下与过量的环氧丙烷反映制得的一种多环氧化酚醛树脂。

室温下一样呈高粘度或半固体状态,对常见的各类增强材料如玻璃纤维、碳纤维和芳纶等都具有良好的浸润性和粘附性。

其特点是环氧基含量高,固化后树脂交联密度大。

可采纳一样环氧树脂固化剂进行固化,如叔胺、酸酐及咪唑类等。

这种复合材料的耐热性介于环氧树脂和酚醛树脂复合材料之间,成型工艺性较酚醛树脂好,收缩率也较低。

成型方式与环氧树脂基复合材料相同。

酚醛树脂基复合材料?

?

phenolicresincomposite

以酚醛树脂为基体的复合材料。

酚醛树脂基复合材料要紧以无机或有机粉状填料、短纤维、玻璃纤维及其制品为增强体,较少采纳碳纤维、芳纶等。

酚醛树脂是世界上用于复合材料的最先利用的树脂基体。

通常有热塑性与热固性两种树脂类型,前者需要借助固化剂固化成型;后者可自身在高温下固化成型。

酚醛树脂复合材料具有良好的耐热性、耐烧蚀性、抗蠕变性、尺寸稳固性、阻燃性、耐磨性、耐侵蚀性和介电性能,缺点是制品收缩率高,脆性大,需在高温、高压下成型。

酚醛树脂基复合材料不仅用作航天领域的烧蚀材料,而且普遍应用于机械制造、电子电器、建筑、化工等领域。

低压酚醛树脂基复合材料?

?

lowpresurephenolicresincomposite

是酚醛树脂基复合材料的一种,其基体是低压酚醛树脂。

低压酚醛树脂是指能够在较低压力(一样为~3MPa)下成型的酚醛树脂。

这种树脂通常有两种来源,一种是苯酚、甲醛在氢氧化钡催化作用下缩合取得的高邻位低压酚醛树脂,具有粘度低、挥发分少、固化速度快等特点;另一种是用聚乙烯醇缩丁醛等改性的低粘度热固性酚醛树脂。

低压酚醛树脂复合材料具有高压酚醛树脂复合材料的许多特性,如耐热性好、可在180~200℃下长期利用;介电性、耐磨性、抗蠕变性、尺寸稳固性优良;价钱低廉等。

突出优势是成型压力低,克服了高压酚醛树脂设备庞大、操作复杂、不能成型较大型制件的缺点,适合真空、袋压、热压罐、接触、缠绕及层压等成型方式。

普遍应用于航空航天及化工领域等。

高压酚醛树脂基复合材料?

?

highpresurephenolicresincomposite

是酚醛树脂基复合材料的一种,其基体是高压酚醛树脂。

高压酚醛树脂是指需在较高压力(一样为5~50MPa)下成型的酚醛树脂。

这种复合材料耐热性高、尺寸稳固性好,吸水性小,介电性能优良,耐烧蚀,耐侵蚀等特点。

通经常使用模压成型。

要紧用于制作各类耐热、耐磨、绝缘制品,小型结构件及各类层压板,用于电气仪表、机械制造及其他工业领域。

改性酚醛树脂基复合材料?

?

modifiedphenolicresincomposite

以改性酚醛树脂为基体的复合材料。

为知足复合材料性能及工艺要求,一样需要对一般酚醛树脂进行改性。

改性途径很多。

用聚乙烯醇缩丁醛、丁氰橡胶等可改性酚醛树脂脆性;用硼酸、有机硅树脂可改性其耐磨和耐然性;用环氧树脂、氨基树脂可改善其粘附性、力学性能及可装饰性;用封锁酚羟基方式可增加酚醛树脂的耐碱性及吸湿性;用环氧氯丙烷与酚羟基反映可取得工艺性好的环氧酚醛树脂等。

改性酚醛树脂复合材料常采纳真空袋、热压成型和缠绕成型;有时也采纳模压、拉挤、注射等成型方式。

这种复合材料作为耐高温、耐烧蚀材料要紧应用于航空航天及其他领域。

双马来酰亚胺树脂基复合材料?

?

bismaleimideresincomposite

以双马来酰亚胺为基体的复合材料。

双马来酰亚胺(BMI)是由马来酸酐和芳香二胺经缩合反映取得的热固性树脂,分子量小,分子两头带有活泼双键,可自聚,也可与烯类单体及其齐聚物或不同结构的双马来酰亚胺的齐聚物进行二元或三元共聚,还可与胺类单体进行加成反映,可取得许多改性树脂品种。

经常使用的增强纤维有碳纤维、石墨纤维及混杂纤维,玻璃纤维也有少量利用。

这种复合材料耐温性好,可在180~200℃下长期利用,耐湿热和老化性能优良,燃烧时少烟、低毒;工艺性良好,适合于接触压成型、缠绕成型、热压罐成型和模压成型等。

改性双马来酰亚胺树脂基复合材料?

?

modifiedbismaleimideresincomposite

以改性双马来酰亚胺为基体的复合材料。

双马来酰亚胺(BMI)具有突出的耐温性能,但脆性大,断裂应变低,固化温度高,作为高性能复合材料基体,必需改性后利用。

有多种改性途径:

烯丙基苯衍生物或丙稀基化合物可通过与BMI分子的烯类链扩展反映和较高温度下进行的交联反映形成交联网络,具有良好的韧性;还可采纳橡胶、低分子量热塑性塑料与BMI共混改性,形成半互穿网络,以达到改善韧性的目的。

用途和工艺方式参见“双马来酰亚胺树脂基复合材料”。

脲醛树脂基复合材料?

?

urea-aldehyderesincomposite

以脲醛树脂为基体的复合材料。

脲醛树脂是脲与醛在酸性或碱性介质中加热缩聚而成,属热固性树脂。

脲醛树脂复合材料要紧有两种形式。

(1)压塑粉:

有脲醛树脂、填料(如纸浆、木粉)和其他添加剂混合加工而成的粉状填料,在130~150℃下可模压呈各类制品,要紧用于制造耐水性和介电性要求不高的制品如电插头、开关、机械手柄、仪表外壳、旋钮、日用品等。

(2)层合板:

由浸渍了脲醛树脂的纸、棉织物与玻璃纤维织物经烘干制成浸胶布,然后叠合、压制而成。

层合板耐热、耐弱酸与碱、耐油与脂肪,刚度与强度较好,要紧用于制造内装饰贴面板和收音机外壳等。

聚氨酯树脂基复合材料?

?

polyurethaneresinmatrixcomposite

以热固性聚氨酯树脂为基体的复合材料。

热固性聚氨酯是多壬二酚(PAPI)与高分子量多元醇的缩聚产物。

经常使用的增强纤维是短切或研磨的玻璃纤维与碳纤维。

由于未固化聚氨酯热固性体系在室温下是流动性专门好的液体,并可迅速固化转变成不溶不熔的状态,因此常采纳增强反映注射模塑工艺。

碳纤维增强聚氨酯复合材料的要紧优势是密度低,强度与低温冲击韧性好,热膨胀系数低,与模具钢材的热膨胀系数相近,弯曲模量比未增强聚氨酯基体高1倍。

聚氨酯复合材料在汽车工业中有重要的应用,如制造车盖、发动机罩栅板、阻流板、仪表板、保险杠等。

热固性聚酰亚胺树脂基复合材料?

?

thermosettingpolyimideresinmatrixcomposite

以热固性聚酰亚胺树脂为基体的复合材料。

聚酰亚胺树脂是一类分子链上含酰亚胺基的聚合物的总称。

品种很多,一样以四元羟酸二酐与二元伯胺缩聚而成,有

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1