火电厂水泵基本知识技术讲座.docx

上传人:b****2 文档编号:24575954 上传时间:2023-05-29 格式:DOCX 页数:72 大小:291.37KB
下载 相关 举报
火电厂水泵基本知识技术讲座.docx_第1页
第1页 / 共72页
火电厂水泵基本知识技术讲座.docx_第2页
第2页 / 共72页
火电厂水泵基本知识技术讲座.docx_第3页
第3页 / 共72页
火电厂水泵基本知识技术讲座.docx_第4页
第4页 / 共72页
火电厂水泵基本知识技术讲座.docx_第5页
第5页 / 共72页
点击查看更多>>
下载资源
资源描述

火电厂水泵基本知识技术讲座.docx

《火电厂水泵基本知识技术讲座.docx》由会员分享,可在线阅读,更多相关《火电厂水泵基本知识技术讲座.docx(72页珍藏版)》请在冰豆网上搜索。

火电厂水泵基本知识技术讲座.docx

火电厂水泵基本知识技术讲座

 

火电厂水泵基本知识技术讲座

 

0

 

1

 

§1.泵的定义、分类及基本参数

 

§2.叶片泵的特性曲线

 

§3.泵装置特性曲线及泵的运行工况和工况调节

 

§4.常见故障及处理措施

 

§5.水泵故障典型案例分析

 

§6.水泵技术发展趋势

 

§1.泵的定义、分类及基本参数

 

1.定义

 

2

 

——泵是一种转换能量的通用机器,它将原动机的机械能转换为它所输送的液体的能量。

 

液体的能量包括:

 

位能——液体所处的位置提高之后,则能量增加;压能——液体所受压力增大,则能量增加;速度能——液体运动速度增快,则能量增加。

 

2.泵的分类

 

按泵的工作原理分为三大类:

⑴叶片式泵——又分为离心泵、混流泵、轴流泵;⑵容积式泵——又分为往复式泵、转子式泵;⑶其他泵——包括漩涡泵、射流泵、水锤泵等。

 

火力发电厂用泵如循环泵、冷凝泵、锅炉泵是电厂的三大辅机泵,都属于叶片式泵一类。

所以下面的内容主要是讲叶片式泵。

 

3.叶片式泵的基本参数

 

⑴流量Q——泵在单位时间内排出液体的数量,计算单位用体积单

 

位:

m3/h,m3/s。

由于水的重度为1,所以多少立

 

方米也就是多少吨。

 

⑵扬程H——单位重量液体通过泵后其能量的增值。

 

单位用m表示,也有用压力单位Kpa来表示。

 

⑶转速n——泵转子每分钟转数,单位为:

转/分钟,r/min。

 

注意:

n是指泵的规定转速,泵的Q、H、Pa、NPSHR值都

 

是在规定转速下的值。

当实际转速nt不等于n值时,

 

3

 

泵的各性能参数值都会有所改变。

 

⑷功率——单位时间内所作的功。

 

轴功率Pa——原动机传给泵的功率,即泵的输入功率,单位

 

为KW。

 

配套功率Pe——指泵配套原动机的额定功率,单位KW。

 

水功率Pw——泵的有效输出功率,计算公式为:

PWQH(KW)

102

式中:

γ——1000Kg/m3

 

Q——m3/s

 

H——m

 

⑸泵效率η——泵的输出功率与输入功率之比

QH100%

102Pa

 

泵效率的高低与泵的型式和流量大小有关。

离心泵的效率国

 

家已制定标准,标准代号为GB/T13007-91(见资料)

 

⑹汽蚀余量NPSH

 

汽蚀余量分为泵必需汽蚀余量NPSHR和装置有效汽蚀余

 

量NPSHA

 

▲泵必需汽蚀余量NPSHR——使泵不发生汽蚀在泵进口处单位重量液体必需具

 

有的超过汽化压力的富余能量,单位为m。

 

泵必需汽蚀余量的数值由试验测定,一般只在泵性能工

 

作范围内测试3点,即中间设计流量点和两个边界流量点。

 

4

 

▲装置有效汽蚀余量NPSHA

 

——相对于泵汽蚀基准线而言,装置提供给泵的有效汽

 

蚀余量。

其计算公式为:

 

NPSHAHaHvHghc

 

式中:

Ha—当地大气压的水柱值,一般标准大气压Ha=10.33m

 

Hv—汽化压力,温度为20℃的水汽化压力为0.24m

 

Hg—泵吸入水位相对于汽蚀基准线的高度差。

在基准

 

面以上为正值,反之为负值,单位为m。

 

Hc—吸入管路的阻力损失,一般hc=0.3~0.5m。

 

⑺比转速ns——表示泵叶轮特征型式的无量纲常数。

ns的计算

 

公式为:

ns

3.65n

Q

3/4

H

式中:

n——泵转速,单位为:

r/min

 

Q——泵流量,单位用m3/s。

若为双吸叶轮,取Q/2

 

H——泵扬程,单位用m。

若为多级泵,取单级扬

 

程Hi。

 

当ns=40~280,属离心泵

 

当ns=300~600,属混流泵(斜流泵)当ns=600~1400,属轴流泵

所以,泵的三个基本参数Q、H、n的值决定了ns值的大小,

 

也就决定了泵的叶轮型式即泵的型式。

 

⑻汽蚀比转数C——表征泵汽蚀性能好坏的无量纲数。

 

5

 

Q

C5.62n

3/4

NPSHR

式中:

Q——泵单吸流量,m3/s。

 

n——泵转速,r/min。

 

NPSHR——泵设计流量点的必须汽蚀余量,m。

 

一般离心泵的C≈900

 

特殊好的高汽蚀性能泵,C=1000~1300。

C与η相互有制约

 

§2.叶片泵的特性曲线

 

1.叶片泵的特性曲线——共有四条线:

H-Q、η-Q、Pa-Q、NPSHR-Q

 

2.不同ns泵的性能曲线的形状有所不同,见下图1、图2、图3:

 

ns≤300ns=300~600ns>600~1400

 

3.对曲线的理解

 

H-Q曲线:

 

⑴表示泵工作点轨迹,泵运行工况(Q、H)离不开此线;⑵泵工作时,H与Q具有一一对应的关系。

 

η-Q曲线:

 

⑴泵设计工况点的η最高,离设计点越远,效率下降越多;

 

⑵依据高效区的宽窄确定泵的Q、H工作范围。

 

6

 

Pa-Q曲线:

 

⑴不同ns的泵,Pa随Q的变化规律不一样。

离心泵的Pa

随Q的增大而增大;轴流泵的Pa关闭点最大,并随Q的增大而下降;混流泵介于两者之间。

 

⑵确定配套功率和泵启动方式的依据。

离心泵关阀启动;轴流泵开阀启动。

 

NPSHR-Q曲线:

 

⑴确定泵安装高程的主要依据,也是确定泵工作范围的依据之一。

 

⑵泵厂试验时,一般只测工作范围内的三个流量点的NPSHR值。

超出工作范围外的NPSHR值变化(上升)很大,无法预测。

 

§3.泵装置特性曲线及泵的运行工况和工况调节

 

1.泵装置的组成——一般由五部分组成⑴循环水泵

 

吸入水池(A)——吸入管路系统(A-P)——泵(P)——吐出管路(P-B)——凝汽器(B)——回水管路(B-C)——凉水塔(C)或冷却塔(C')或虹吸吐出水池(C'')

 

7

 

⑵冷凝泵

 

热井吸入(A)——吸入管路系统(A-P)——冷凝泵(P)——

 

吐出管路系统(P-B)——除氧器(B)

 

8

 

⑶锅炉给水泵

 

前置泵出口(A)——吸入管路系统(A-P)——锅炉泵(P)——吐出管路系统(P-B)——省煤器(B)

 

2.泵装置扬程的组成⑴循环水泵

 

循环水泵的装置扬程Hz由几何扬程Hg和阻力损失扬程H

 

两部分组成:

 

几何扬程Hgh2h1

 

式中:

h2——冷却塔或虹吸池水位标高(一般h2比较恒定)

 

h1——吸入水池水位标高(h1有高水位、低水位和设

 

计水位)

 

管路阻力损失扬程,简称管阻扬程H:

 

HkQ2

 

式中:

k——总阻力系数,凝汽器和管路系统确定之后,k值

 

也就确定。

 

Q——循环水的流量

 

所以,循环水泵的装置扬程方程为:

 

9

 

HzHgkQ2

 

Hz—Q曲线是一条抛物线,如图8所示:

 

⑵冷凝泵

 

冷凝泵的装置扬程由几何扬程Hg、

 

压力扬程Hp和管阻扬程H三部分组成:

 

几何扬程HgZ2Z1

 

式中:

Z2——除氧器中的水位标高

 

Z1——热井中的水位标高

 

压力扬程Hp102P2P1

 

式中:

P2——除氧器液面压力。

单位MPa

 

P1——热井中液面压力。

一般为饱和蒸汽压。

 

单位负MPa

 

管阻扬程HkQ2

 

所以,凝结水泵的装置扬程Hz为:

 

HzHgHpH

 

所以凝结水泵的装置特性曲线也是

 

一条抛物线,如图9所示:

 

⑶锅炉给水泵

 

锅炉给水泵的装置扬程,从严格意义上来讲也是由几何扬

 

程Hg、压力扬程Hp、阻力扬程H三部分组成:

 

HzHgHpH

 

Z

2

Z

102P

PKQ2

1

B

A

 

10

 

但是几何扬程Hg和阻力扬程H所占比例很小,所以装

 

置特性方程可简化为:

 

HZHP102PBPA

 

式中:

PB——锅炉中的液面压力。

单位MPa

 

PA——前置泵出口压力。

单位MPa

 

它的装置特性曲线是一条平行线,

 

只是随着锅炉泵转速的变化在一定范

 

围内波动。

见图10所示:

 

3.泵的运行工况点

 

泵的运行工况点是由扬程特性曲线H-Q与泵的装置扬程特性曲线Hz-Q的交点确定的。

如图11所示A点

 

对泵工作扬程的误解:

泵的运行

 

扬程应该达到泵铭牌所示的扬程。

 

由于对泵工作扬程的误解,导致

 

一些错误的做法。

如某一个泵站,泵

 

的铭牌扬程是30m,但泵的出口压力

 

只显示0.2MPa,认为是泵的扬程不够,为了提高泵的扬程,于是将电机转速提高,更换新电机,结果泵发生汽蚀,反而不能安全运行。

 

4.泵运行工况点的调节

 

泵运行工况点的调节,其实就是改变Q-H曲线与Hz-Q曲线的交点A。

 

11

 

改变工况点A的两条途径:

 

⑴改变Hz-Q曲线,如节流调节,常在冷凝泵上采用。

⑵改变H-Q曲线,如变速调节,在锅炉给水泵和冷凝泵上经

 

常采用。

 

泵的运行工况点都要落在泵的规定工作范围内,否则运行工况就不合理。

 

5.泵的规定工作范围⑴泵规定工作范围的确定

 

一般按照泵效率较高、汽蚀性能较好的区域确定为泵的规定工作范围。

(见图12)

 

一般泵规定流量范围为:

 

Q=0.7Qp~1.2Qp

 

Qp——设计点流量

 

有时候泵性能的某一区域

 

虽然效率较高,但汽蚀性能很差,

 

也不能把它作为规定的工作范围。

 

⑵泵工作范围的扩展

 

扩展一台泵工作范围的途径:

 

A.切割叶轮(同一台泵配不同外径的叶轮)

 

a).叶轮外径D2尺寸切割量的限制见表11:

 

12

 

表11.离心泵叶轮外径

D2切割量

比转速n

60

80

100

120

140

160

200

250

280

s

切割量

0.20

0.18

0.17

0.15

0.14

0.13

0.11

0.10

0.09

 

b).叶轮外径D2切割与性能变化规律

 

Q'

D2

'

Q

D2

H'

D2

'

2

H

D2

Pa'

D2

'

3

Pa

D2

 

式中:

D2、Q、H、Pa——切割前的参数

 

D2′、Q′、H′、Pa′——切割后的参数

 

切割后泵效率的变化Δη,从D2max→D2min,Δη=0~3%。

 

c).D2切割计算程序:

 

ⅰ).确定切割后要求的参数Q′、H′;

H'

ⅱ).计算切割常数kQ'2;

 

ⅲ).准备好泵的性能曲线图,并在其上作切割抛物线H=KQ2交H-Q曲线于A点,QA、HA即为切割前的相似工况点;

 

ⅳ).计算切割量,即计算切割后的D2′值

 

D2'D2

Q'

QA

 

13

 

D2'D2

 

H'

HA

计算得到的两个D2′值会基本相等,一般取其大者;

 

ⅴ).换算切割后的性能曲线

 

按b)节所述公式换算Q′、H′、η等,约作修正,并计算Pa值。

一般列表计算。

 

A.降速或双速

 

水泵的转速一般允许降低而不允许升高。

因为水泵的壳

 

体、主轴等部件的强度计算是按规定转速下的流量、扬程值计算的,转速升高之后,Q、H值增大,壳体、主轴等零部件的强度可能不够,所以一般不允许升速。

如果要升速,则要重新校核壳体、主轴和轴承等零部件的强度和寿命。

 

水泵降速之后,Q、H、Pa、NPSHR均随之下降,因而得到新的性能特性,扩展了泵的性能范围。

 

水泵的性能随转速变化的规律为:

Q'

n'

Q

n

H'

n'2

H

n

Pa'

3

n'

Pa

n

 

1.7~2

NPSHR'n'

NPSHRn

 

14

 

C

 

式中:

Q、H、Pa、NPSHR、η——原性能参数

 

Q′、H′、Pa′、NPSHR′η′、——降速后的性能参数至于双速,就是配套电机有高速和低速两档相互转换的速

 

度,从而泵的性能有高速和低速两种性能。

近几年来,为了高效运行、节能降耗,很多单位采用双速循环泵。

 

C.变频调速——无级变速

 

这是冷凝泵、循环泵和锅炉泵上都采用过的一种调节方法。

 

但是变频调节的必要性和不用变频调速而只利用泵的扬程变幅是否可满足扬程的变化要求,这是一个值得探讨的问题。

 

采用变频调速有三个问题:

1).变频器价格比较贵;2).人为调节时任意性较大,很难恰到好处;3).目前大功率变频机故障率较高,维修技术要求高。

所以能不用变频调速而采用其他方法来满足工况调节要求,最好少用变频调节。

 

D.动叶可调式泵

 

这种扩大泵工作范围的动叶可调式方法,少数大型循环水泵上采用。

因其结构复杂、价格较高、维修麻烦,所以在整个泵行业,应用都不多。

因此我们也不祥述。

 

§4.常见故障及处理措施

 

水泵常见故障及处理措施略述如下:

 

1.水泵扬程过高引发的运行故障

 

15

 

设计院在作水泵选型时,泵的扬程首先是通过理论计算确定的,往往有些保守,致使所选泵的扬程高于实际装置所需要的扬程,从而导致泵偏工况运行。

由于偏工况运行,会造成如下一些运行故障:

 

⑴电机超功率(电流),常常出现在离心泵上。

⑵泵发生汽蚀现象,并伴发震动和噪音,出口压力表指

 

针频繁摆动。

由于汽蚀发生,还导致叶轮汽蚀破坏,运行流量下降。

 

处理措施:

分析泵运行数据,重新确定装置所要求的实际扬程,调整(降低)泵的扬程。

最简单的方法是切割叶轮外径;如切削叶轮不足以满足扬程降低值的要求,可更换新设计的叶轮;还可将电机作降低转速的改造以降低泵扬程。

 

2.滚动轴承部位温升超标

 

国产滚动轴承允许的最高温度不超过80℃,进口轴承如SKF轴承,允许的最高温度可达110℃。

平时运行检查时,都以手摸触感来判断轴承是否发热,这是不规范的判断。

 

引起轴承部位温升过高的常见原因有以下几点:

⑴润滑油(脂)过多;⑵机泵两轴不对中,使轴承受到额外的负载;⑶零部件加工误差,特别是轴承体与泵座相配合的端面

 

垂直度超差,也会使轴承受到额外的干扰力而发热;⑷泵体受到吐出管道的推拉干扰,从而破坏了机泵两轴

 

16

 

的同心度,也会使轴承发热;

 

⑸轴承润滑不良或润滑油脂中含有泥沙或铁屑,也会使

 

轴承发热;

 

⑹轴承容量不足,这是泵设计选择的问题,成熟产品一

 

般不存在这一问题。

 

处理措施:

找出发热原因,采取相对应的改进措施。

 

3.泵发生汽蚀现象,导致震动噪音和叶轮破坏

 

泵发生汽蚀现象的实质原因是泵装置汽蚀余量(以

 

NPSHA表示)小于泵必需汽蚀余量(以NPSHR表示)而造成

 

的。

 

泵装置汽蚀余量NPSHA的值是由装置确定的,它与当地大气压Pa、输送介质的汽化压力Pv、泵汽蚀基准线离吸入液面的几何高度Hg、吸入管路的阻力损失hc有关,具体的计算公式为:

PaPv

NPSHAHghc

 

式中:

Pa——当地大气压

 

Pv——介质输送温度下的汽化压力

 

Hg——泵汽蚀基准线(对双吸中开泵而言,即为轴中心线)距吸入液面的垂直高度,液面在基准线以上时,Hg为正值,反之为负值。

 

hc——泵吸入管路的阻力损失,一般为

 

17

 

0.3~0.5m。

 

当装置确定之后,而且吸入水位恒定的情况下,NPSHA值为一个恒定值。

 

泵必需汽蚀余量NPSHR值是通过泵试验确定的,一般只做三个流量点(即规定范围内的三个流量点:

小流量点、中

 

间设计流量点、大流量点)的试验,而且三个流量点的NPSHR值不一样,正常情况下,中间设计流量点的NPSHR值最小,其他流量点特别是大流量点的NPSHR值要增大。

超出大流量点以外的NPSHR值一般都急剧增大,无法预料。

 

设计院确定泵的安装高度,装置汽蚀余量NPSHA值要满足泵适用范围内最大必需汽蚀余量NPSHR值的要求。

但是为什么还会发生汽蚀现象呢?

其原因有以下几点:

 

⑴泵偏工况运行造成汽蚀的发生

 

由于选型误差,使泵的运行工况点不在泵的规定范围

 

内,而是偏在大流量区域运行。

由于大流量点的NPSHR值无

 

法预料的增大,造成NPSHA

 

⑵吸入管内发生堵塞现象(有异物)或者阻力损失计算值小于实际值,导致有效装置汽蚀余量减小,从而使NPSHA

 

⑶由于制造误差,泵的实际必需汽蚀余量大于样本上的规定值,从而使NPSHR>NPSHA值而发生汽蚀。

 

处理措施:

针对以上所述造成汽蚀的三个原因,相应的

 

18

 

采取以下三种解决措施。

 

⑴调整泵的性能(一般是降低泵的扬程值),使泵的运行

 

工况点回到规定的流量范围内运行;

 

⑵检查并清理吸入管内的杂物;

 

⑶将泵返回制造厂作汽蚀试验,核实泵的汽蚀余量值是

 

否达到样本规定值。

 

4.振动超差

 

⑴简单介绍泵的振动测量与评价方法标准

 

JB/T8097-99的基本内容:

 

ⅰ).该标准确定了各类泵振动测量的测点位置和测量

 

方向。

 

对于卧式中开泵,两个主测点定在两端轴承座上方,一个辅助测点定在联轴器侧下方的底座上,见图示(中开泵振动测点示意图)

 

ⅱ).该标准明确了振动测量时,泵一定要在规定转速和规定工作范围内运行。

 

ⅲ).为了评价泵的振动级别,按泵的中心高和转速把泵分为四类,见下表2:

 

19

 

卧式泵的中心高规定为由泵的轴线到泵的底座上平面间的距离h,mm。

立式泵本来没有中心高,为了评价它的振动级别,取一个相当尺寸做立式泵的中心高;即把立式泵的出口法兰密封面到泵轴线间的投影距离,规定为它的相当中心高。

ⅳ).泵的振动评价方法

 

首先测量泵的振动烈度并按下表确定泵的烈度级

烈度级

振动烈度的范围mm/s

0.11

0.07

0.11

0.18

0.11

0.18

0.28

0.18

0.28

0.45

0.28

0.45

0.71

0.45

0.71

1.12

0.71

1.12

1.80

1.12

1.80

2.80

1.80

2.80

4.50

2.80

4.50

7.10

4.50

7.10

11.20

7.10

11.20

18.00

11.20

18.00

28.00

18.00

28.00

45.00

28.00

45.00

71.00

45.00

71.00

然后根据烈度级查表3判定泵的振动级别,泵的振动级

 

别分为A、B、C、D四级,D级为不合格。

表3

 

20

 

⑵泵振动超差的原因

 

引起泵振动超差的原因有很多因素,总的来说,可归纳以

 

下一些因素:

 

ⅰ).泵选型不当

 

泵选型不当使泵偏工况运行(运行流量大于最大规定

 

流量或小于最小规定流量都是属偏工况运行),从而或引发

 

汽蚀而振动、或处于拐点(对于混流泵和轴流泵而言)运行而

 

振动。

 

ⅱ).泵安装质量因素

 

安装时基础找平、转子对中未达规范要求,都可能引

 

发泵振动超差;立式泵的配套电机的油隙气隙调整不当也可

 

能使振动超差。

 

21

 

ⅲ).泵制造质量因素

 

由于泵制造质量原因引起泵振动超差最主要的一点是

 

叶轮的平衡质量。

 

ⅳ).管路系统配置因素

 

管路系统配置方面容易引发振动超差的失误之处是泵

 

吐出管路上配置柔性伸缩节时,未将伸缩节最终予以刚性联

 

接,造成管道及泵座位移,破坏机泵对中性,从而使振动超

 

差。

 

对于吐出压力较高的泵装置,吐出管路上如果有能调节

 

轴向长度的伸缩节(包括轮胎节),调整安装之后,一定要用

 

长螺杆将伸缩节两端法兰刚性联接,使其不能再自由伸缩。

 

ⅴ).土建因素

 

土建因素主要是泵的水泥基础的刚度与稳定性两方面。

 

对于立式湿井泵,泵的水泥基础为井字形水泥梁框架,要求有足够的承载刚度,否则易使泵振动超差。

另外,新建的大型泵房,初期有一个沉降过程,如果过早的安装水泵,泵房不均匀沉降后会使原来找平的泵基础其水平度不符合要求。

这些情况都可能加剧泵的振动。

 

⑶振动问题的处理措施:

 

因为引起振动超差的原因很多,所以遇到振动问题,要找出其原因有一个过程。

要从诸多因素中逐个逐个地排除一些因素,最终确定一个或两个主因,再采取相应的解决措施。

 

22

 

§典型故障案例分析

 

案例Ⅰ:

安阳电厂24SA-18型循环泵汽蚀破坏

 

1.基本情况:

 

安阳电厂3#机组(25MW)配用两台双吸中开泵作循环冷却泵

 

泵的铭牌参数为:

 

Q

3240m3/h

H

32m

n

960r/min

Pa

317.5KW

Hs

29m即NPSHR

7.4m

 

泵装置为一次循环供水,取水口和排出口均在同一水面上,开车运行不到2个月,泵叶轮就被汽蚀破坏穿孔。

 

2.处理过程:

 

首先作现场调查,发现泵的出口压仅0.1MPa,而且指针剧烈摆动,并伴有爆破气蚀响声。

作为水泵专业人员,第一印象就知道这是由于偏工况运行而造成汽蚀发生。

因为泵的设计扬程为32m,反应在吐出压力表上,读数应在0.3MPa左右。

而现场压力表读数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1