勾股定理的逆定理测试题.docx
《勾股定理的逆定理测试题.docx》由会员分享,可在线阅读,更多相关《勾股定理的逆定理测试题.docx(14页珍藏版)》请在冰豆网上搜索。
勾股定理的逆定理测试题
第十七章勾股定理
17.2勾股定理的逆定理
一、选择题:
在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列各组数据是勾股数的是
A.5,12,13B.6,9,12C.12,15,18D.12,35,36
2.下列四组线段a、b、c,能组成直角三角形的是
A.a=4,b=5,c=6B.a=1.5,b=2,c=2.5
C.a=2,b=3,c=4D.a=1,b=
,c=3
3.下列说法中错误的是
A.若∠C=∠A–∠B,则△ABC为直角三角形
B.若a∶b∶c=2∶2∶2
,则△ABC为直角三角形
C.若a=
c,b=
c,则△ABC为直角三角形
D.若∠A∶∠B∶∠C=3∶4∶5,则△ABC为直角三角形
4.学校的书香苑呈三角形形状,三边分别是9,12,15,那么书香苑的面积是
A.135B.180
C.108D.54
5.如图所示的一块地,∠ADC=90°,
,
,
,
,求这块地的面积
为
A.54m2B.108m2
C.216m2D.270m2
6.如图,△ABC中,AC=3,BC=5,AD⊥BC交BC于点D,AD=
,延长BC至E使得CE=BC,将△ABC沿AC翻折得到△AFC,连接EF,则线段EF的长为
A.6B.8C.
D.
7.若一个三角形三边a,b,c满足(a+b)2=c2+2ab,则这个三角形是
A.等边三角形B.钝角三角形
C.等腰直角三角形D.直角三角形
8.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是
A.
B.
C.
D.
二、填空题:
请将答案填在题中横线上.
9.若|a-7|+
+(c-25)2=0,则以a、b、c为三边的三角形的形状是__________.
10.
(1)如果两个命题的题设、结论正好相反,那么这两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的__________.
(2)如果一个定理的逆命题经过证明是正确的,它也是一个定理,则称这两个定理互为__________.
(3)一个命题__________有逆命题,一个定理__________有逆定理.(填“一定”或“不一定”)
11.如图,小明散步从A到B走了41米,从B到C走了40米,从C到A走了9米,则∠A+∠B=________.
12.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成__________个直角三角形.
三、解答题:
解答应写出文字说明、证明过程或演算步骤.
13.已知:
如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:
△ABC是直角三角形.
14.如图,是一个四边形的边角料,东东通过测量,获得了如下数据:
AB=3cm,BC=12cm,CD=13cm,AD=4cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?
如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?
15.龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是
米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是
米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?
如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?
16.如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?
人教版七年级上册
期末测试卷
一、选择题(每题3分,共30分)
1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )
A.-3℃B.8℃
C.-8℃D.11℃
2.下列立体图形中,从上面看能得到正方形的是( )
3.下列方程是一元一次方程的是( )
A.x-y=6B.x-2=x
C.x2+3x=1D.1+x=3
4.今年某市约有108000名应届初中毕业生参加中考,108000用科学记数法表示为( )
A.0.108×106B.10.8×104
C.1.08×106D.1.08×105
5.下列计算正确的是( )
A.3x2-x2=3B.3a2+2a3=5a5
C.3+x=3xD.-0.25ab+
ba=0
6.已知ax=ay,下列各式中一定成立的是( )
A.x=yB.ax+1=ay-1
C.ax=-ayD.3-ax=3-ay
7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )
A.100元B.105元
C.110元D.120元
8.如果一个角的余角是50°,那么这个角的补角的度数是( )
A.130°B.40°
C.90°D.140°
9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是( )
A.m-nB.m+n
C.2m-nD.2m+n
10.下列结论:
①若a+b+c=0,且abc≠0,则
=-
;
②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;
③若a+b+c=0,且abc≠0,则abc>0;
④若|a|>|b|,则
>0.
其中正确的结论是( )
A.①②③B.①②④
C.②③④D.①②③④
二、填空题(每题3分,共24分)
11.-
的相反数是________,-
的倒数的绝对值是________.
12.若-
xy3与2xm-2yn+5是同类项,则nm=________.
13.若关于x的方程2x+a=1与方程3x-1=2x+2的解相同,则a的值为________.
14.一个角的余角为70°28′47″,那么这个角等于____________.
15.下列说法:
①两点确定一条直线;②两点之间,线段最短;③若∠AOC=
∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.
16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.
17.规定一种新运算:
a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:
(-3)△4________4△(-3)(填“>”“=”或“<”).
18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.
三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)
19.计算:
(1)-4+2×|-3|-(-5);
(2)-3×(-4)+(-2)3÷(-2)2-(-1)2018.
20.解方程:
(1)4-3(2-x)=5x;
(2)
-1=
-
.
21.先化简,再求值:
2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.
22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.
23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.
24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.
(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.
(2)当点C与点E,F在直线AB的两侧时(如图②所示),
(1)中的结论是否仍然成立?
请给出你的结论,并说明理由.
25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:
每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.
(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)
(2)某用户为了解日用电量,记录了9月前几天的电表读数.
日期
9月1日
9月2日
9月3日
9月4日
9月5日
9月6日
9月7日
电表读数/度
123
130
137
145
153
159
165
该用户9月的电费约为多少元?
(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?
26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.
(1)A,B两点间的距离是________.
(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.
(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?
(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:
①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.
(第26题)
答案
一、1.D 2.A 3.D 4.D 5.D 6.D
7.A 8.D 9.C 10.B
二、11.
;5 12.-8 13.-5
14.19°31′13″ 15.3 16.7
17.> 18.(6n+2)
三、19.解:
(1)原式=-4+2×3+5=-4+6+5=7;
(2)原式=12+(-8)÷4-1=12-2-1=9.
20.解:
(1)去括号,得4-6+3x=5x.
移项、合并同类项,得-2x=2.
系数化为1,得x=-1.
(2)去分母,得3(x-2)-6=2(x+1)-(x+8).
去括号,得3x-6-6=2x+2-x-8.
移项、合并同类项,得2x=6.
系数化为1,得x=3.
21.解:
原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.
当x=1,y=-1时,
原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.
22.解:
由题图可知-3
所以1-3b>0,2+b<0,3b-2<0.
所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.
23.解:
如图所示.
24.解:
(1)设∠COF=α,
则∠EOF=90°-α.
因为OF是∠AOE的平分线,
所以∠AOE=2∠EOF=2(90°-α)=180°-2α.
所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.
所以∠BOE=2∠COF.
(2)∠BOE=2∠COF仍成立.
理由:
设∠AOC=β,
则∠AOE=90°-β,
又因为OF是∠AOE的平分线,
所以∠AOF=
.
所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=
+β=
(90°+β).
所以∠BOE=2∠COF.
25.解:
(1)0.5x;(0.65x-15)
(2)(165-123)÷6×30=210(度),
210×0.65-15=121.5(元).
答:
该用户9月的电费约为121.5元.
(3)设10月的用电量为a度.
根据题意,得0.65a-15=0.55a,
解得a=150.
答:
该用户10月用电150度.
26.解:
(1)130
(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;
若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.
故点C表示的数为-50或25.
(3)设从出发到同时运动到点D经过的时间为ts,则6t-4t=130,
解得t=65.
65×4=260,260+30=290,
所以点D表示的数为-290.
(4)ON-AQ的值不变.
设运动时间为ms,
则PO=100+8m,AQ=4m.
由题意知N为PO的中点,
得ON=
PO=50+4m,
所以ON+AQ=50+4m+4m=50+8m,
ON-AQ=50+4m-4m=50.
故ON-AQ的值不变,这个值为50.