将线框在磁场上方高h处由静止开始释放,当ab边进入磁场时速度为v0,cd边刚穿出磁场时速度也为v0,从ab边刚进入磁场到cd边刚穿出磁场的整个过程中()
A.线框一直都有感应电流B.线框有一阶段的加速度为g
C.线框产生的热量为mg(d+h+L)D.线框做过减速运动
11、如图所示,竖直放置的平行金属导轨EF和GH两部分导轨间距为2L,IJ和MN两部分导轨间距为L。
整个装置处在水平向里的匀强磁场中,金属杆ab和cd的质量均为m,可在导轨上无摩擦滑动,且与导轨接触良好。
现对金属杆ab施加一个竖直向上的作用力F,使其匀速向上运动,此时cd处于静止状态,则力F的大小为()
A.mgB.2mgC.3mgD.4mg
12、如图所示,A、B是完全相同的两个小灯泡,L为自感系数很大、电阻可以忽略的带铁芯的线圈,则().
A.电键S闭合的瞬间,A、B同时发光,随后A灯变暗,B灯变亮
B.电键S闭合的瞬间,B灯亮,A灯不亮
C.断开电键S的瞬间,A、B灯同时熄灭
D.断开电键S的瞬间.B灯立即熄灭,A灯突然闪亮一下再熄灭
13、如图所示,水平地面上方矩形虚线区域内有垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ和Ⅱ分别用同样的导线绕制而成,其中Ⅰ是边长为L的正方形,Ⅱ是长2L、宽L的矩形.将两线圈从图示位置同时由静止释放.线圈下边进入磁场时,Ⅰ立即做一段时间的匀速运动.已知两线圈在整个运动过程中,下边始终平行于磁场上边界,不计空气阻力.则( )
A.下边进入磁场时,Ⅱ也立即做一段时间的匀速运动
B.从下边进入磁场开始的一段时间内.线圈Ⅱ做加速度不断减小的加速运动
C.从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的减速运动
D.线圈Ⅱ先到达地面
14、如图,两根平行的光滑导轨竖直放置,处于垂直轨道平面的匀强磁场中,金属杆ab接在两导轨之间,在开关S断开时让ab自由下落,ab下落过程中始终保持与导轨接触良好,设导轨足够长,电阻不计。
ab下落一段时间后开关闭合,从开关闭合开始计时,ab下滑速度v随时间变化的图象可能是()
二、实验、填空题
15(4分)、欧姆表是由表头、干电池和调零电阻等串联而成的,有关欧姆表的使用和连接,下面的叙述正确的是()
①测电阻前要使红、黑表笔相接,调节调零电阻,使表头指示电流为零;
②红表笔与表内电池正极相连,黑表笔与表内电池负极相连;
③红表笔与表内电池负极相连,黑表笔与表内电池正极相连;
④测电阻时,表针偏转角度越大,待测电阻阻值越大;
⑤测电阻时,表针偏转角度越大,待测电阻阻值越小。
A.①②B.③⑤C.②④D.①④
16(5分)、为了测量一微安表头A的内阻,某同学设计了如图所示的电路。
图中,A0是标准电流表,R0和RN分别是滑动变阻器和电阻箱,S和S1分别是单刀双掷开关和单刀开关,E是电池。
完成下列实验步骤中的填空:
(1)将S拨向接点1,接通S1,调节________,使待测表头指针偏转到适当位置,记下此时________的读数I;
(2)然后将S拨向接点2,调节________,使________,记下此时RN的读数;
(3)多次重复上述过程,计算RN读数的________,此即为待测微安表头内阻的测量值。
17(4分)、如图所示,已知黑箱外有A、B、C三只接线柱,黑箱内有一只定值电阻和一个二极管,它们的两端都直接接在接线柱上。
用多用电表依次测三只接线柱间的阻值,结果如下表所示。
请判定黑箱内的结构。
红表笔
A
A
B
C
C
B
黑表笔
B
C
C
B
A
A
阻值/Ω
100
150
50
2000
2100
100
三、计算题(本题共4个小题,41分,要求有必要的文字说明、方程式和重要的演算步骤,只有结果没有过程的不能得分,有数值计算的必须写出数值和单位)
18(8分)、如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B2=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电荷量q=8.0×10-19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:
(1)离子运动的速度为多大?
(2)离子的质量应在什么范围内?
19(12分)、如练图所示的竖直平面内有范围足够大、水平向左的匀强电场,在虚线的左侧有垂直纸面向里的匀强磁场,磁感应强度大小为B,一绝缘轨道由两段直杆和一半径为R的半圆环组成,固定在纸面所在的竖直平面内,PQ、MN水平且足够长,半圆环MAP在磁场边界左侧,P、M在磁场边界线上,NMAP段光滑,PQ段粗糙.现在有一质量为m、带电荷量为+q的小环套在MN杆上,它所受电场力为重力的
.现将小环从M点右侧的D点由静止释放,小环刚好能到达P点.
(1)求DM间距离x0;
(2)求上述过程中小环第一次通过与O等高的A点时半圆环对小环作用力的大小;
(3)若小环与PQ间动摩擦因数为μ(设最大静摩擦力与滑动摩擦力大小相等),现将小环移至M点右侧5R处由静止开始释放,求小环在整个运动过程中克服摩擦力所做的功.
20(10分)、如图所示,位于竖直平面内的矩形平面导线框abcd,ab长L1=1.0m,bd长L2=0.5m,线框的质量m=0.2kg,电阻R=2Ω。
其下方有一匀强磁场区域,该区域的上、下边界PP/和QQ/均与ab平行,两边界间距离为H,H>L2,磁场的磁感应强度B=1T,方向与线框平面垂直。
现令线框的dc边从离磁场区域的上边界PP/的距离为h=0.7m处从静止开始自由下落,已知在线框的dc边进入磁场以后,ab边到达边界PP/之前的某一时刻线框的速度已达到这一阶段的最大值,求从线框开始下落到dc边刚刚到达磁场区域下边界QQ/的过程中,线框中产生的焦耳热。
(不计空气阻力,g=10m/s2)
21(11分)、光滑平行金属导轨水平面内固定,导轨间距L=0.5m,导轨右端接有电阻RL=4Ω小灯泡,导轨电阻不计。
如图甲,在导轨的MNQP矩形区域内有竖直向上的磁场,MN、PQ间距d=3m,此区域磁感应强度B随时间t变化规律如图乙所示,垂直导轨跨接一金属杆,其电阻r=1Ω,在t=0时刻,用水平恒力F拉金属杆,使其由静止开始自GH位往右运动,在金属杆由GH位到PQ位运动过程中,小灯发光始终没变化,
求:
(1)小灯泡发光电功率;
(2)水平恒力F大小;
(3)金属杆质量m.
高三月考五物理答案2013.12
(2)设离子的质量为m,如图所示,当通过x轴时的速度方向与x轴正方向夹角为45°时,由几何关系可知运动半径r1=0.2m
当通过x轴时的速度方向与x轴正方向夹角为90°时,由几何关系可知运动半径r2=0.1m
由牛顿第二定律有qvB2=m
由于r2≤r≤r1
解得4.0×10-26kg≤m≤8.0×10-26kg.[
20、Q=0.8J
21、
(1)E=(L·d)△B/△t=0.5×3×2/4=0.75V
I=E/(R+r)=0.75/5=0.15AP=I2·Rl=0.152×4=0.09w
(2)由题分析知:
杆在匀强磁场中匀速运动,插入磁场区域之前匀加速运动
∴F=F安=ILB=0.15×0.5×2=0.15N
(3)E′=I(R+r)=0.15×5=0.75V
E′=BLV′V′=0.75/(2×0.5)=0.75m/s
F=maV′=atm=F/a=0.15/(0.75/4)=0.8kg