铝及铝合金焊接中的缺陷及原因分析doc改.docx

上传人:b****7 文档编号:23937369 上传时间:2023-05-22 格式:DOCX 页数:23 大小:33.28KB
下载 相关 举报
铝及铝合金焊接中的缺陷及原因分析doc改.docx_第1页
第1页 / 共23页
铝及铝合金焊接中的缺陷及原因分析doc改.docx_第2页
第2页 / 共23页
铝及铝合金焊接中的缺陷及原因分析doc改.docx_第3页
第3页 / 共23页
铝及铝合金焊接中的缺陷及原因分析doc改.docx_第4页
第4页 / 共23页
铝及铝合金焊接中的缺陷及原因分析doc改.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

铝及铝合金焊接中的缺陷及原因分析doc改.docx

《铝及铝合金焊接中的缺陷及原因分析doc改.docx》由会员分享,可在线阅读,更多相关《铝及铝合金焊接中的缺陷及原因分析doc改.docx(23页珍藏版)》请在冰豆网上搜索。

铝及铝合金焊接中的缺陷及原因分析doc改.docx

铝及铝合金焊接中的缺陷及原因分析doc改

目录

摘要……………………………………………………………………………………..2

绪论……………………………………………………………………………………..3

一铝及铝合金特性……………………………………………………………….4

(一)铝及铝合金具有特殊的物理化学性能……………………………..…4

二铝及铝合金的焊接工艺方法……………………………………………..…4

(一)铝合金的焊接方法……………………………………….……………4

(二)铝及铝合金的焊接工艺方法……………………………………………5

三铝及铝合金常见焊接缺陷及原因…………………………………………...8

(一)铝合金常见焊接缺陷种类……………………………………………..8

(二)铝及铝合金焊接缺陷的原因分析………………………………….…10

四铝及铝合金缺陷的防治措施和解决方法…………………………….…….12

五总结………………………………………………………………….……….14

六致谢………………………………………………………………….……….15

 

内容摘要

随着焊接技术的飞速发展,铝及铝合金的焊接也得到了广泛的应用,由于材料本身的特殊性,也给焊工带来较大的困难,要想掌握铝及铝合金的焊接技术,在了解铝合金的基本性能、焊接特点、焊接材料、焊接设备、焊接操作方法的基础上,还要掌握避免在焊接过程中出现焊接缺陷的技能。

关键词:

铝及铝合金焊接特点焊接缺陷

 

绪论

铝及铝合金是工业中应用最广泛的一类金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。

随着近年来科学技术以及工业经济的飞速发展,焊接结构件的需求日益增多,使铝及铝合金的焊接性研究也随之深入。

铝及铝合金的广泛应用促进了铝及铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝及铝合金的应用领域,因此铝及铝合金的焊接技术正成为研究的热点之一。

而焊接缺陷在焊接施工过程中,做到完全避免是不可能的,缺陷来自工艺缺陷和设计缺陷两部分,工艺缺陷需要在生产过程中,进行严格的质量控制、装备和人员配置要合理化、试验和培训要按着规程去执行,如气孔、咬边、起楞、裂纹、未焊透等均定义为工艺缺陷。

设计缺陷是指结构产生的缺陷,如焊缝过密、交叉过多、焊缝板厚差过大、材料匹配不良等导致的裂纹属于设计缺陷。

工艺缺陷可以通过优化施工条件和增加工艺装备解决,设计缺陷可以通过优化结构来完成,对于结构特殊的要求和限制,可能会有一些焊缝很难焊好,如需要盲焊等操作,在这种条件下,需要进行大量的模拟培训,实现合格的焊接质量。

 

 

一、铝及铝合金特性

(一)合金具有特殊的物理化学性能

合金的外观呈银白色,密度小、电阻率低,热膨胀系数和导热系数大。

由于铝为面心立方结构,无同素异构转变,无“延—脆”转变,因而具有优异低温韧性,在低温下能保持良好的力学性能。

此外,铝及铝合金还具有优异的耐蚀性能和较高的比强度,对热和光都具有良好的反射率,磨削时无火花和无磁性。

纯铝的熔点为660℃,而铝合金随着其含的合金元素的不同,它的熔点在482℃~660℃之间变化。

铝及铝合金从常温加热到熔化状态时,没有颜色的变化,这就使判断是否接近熔点变的十分困难。

铝及铝合金可以铸造、轧制、冲压、拔丝、施压、拉形和滚扎等各种方法制成形状各异的制品。

铝及铝合金容易机械加工,且加工速度快,这也是大量使用铝零件的重要因素之一。

铝的机械性能、电化学性能、化学或油漆涂饰的变化范围也较宽。

铝及铝合金的机械性能随纯度而变化,纯度越高,强度越低,塑性越高。

随着温度的升高,其抗拉强度降低;温度降低,则抗拉强度就增高,延伸率随之增加。

铝及铝合金暴露在空气中时,会很快形成一种黏着力强且耐热的氧化铝薄膜。

在焊接前,必须仔细清除这层氧化膜,才能在熔焊时,基体和填充金属熔合良好。

在钎焊时,钎料有很好的流动性。

氧化膜可用溶剂去除,也可在惰性气氛下,由焊接电弧的作用去除,或者用机械的或化学的方法去除。

熔焊时,就需要高的热量输入。

对大型截面焊接时,需要进行预热。

二、铝及铝合金的焊接工艺方法

(一)铝合金的焊接方法

铝合金的焊接方法很多,各种方法有其不同的应用场合。

除了传统的熔焊、电阻焊、气焊方法外,其他一些焊接方法(如等离子弧焊、电子束焊、真空扩散焊等)也可以容易地将铝合金焊接在一起。

铝合金常用焊接方法的特点及适用范围见表1.1.根据铝及铝合金的牌号、焊件厚度、产品结构以及对焊接性的要求等选择。

焊接方法

特点

适用范围

气焊

热功率低,焊件变形大,生产率低,易产生夹渣、裂纹等缺陷

用于非重要场合的薄板对接焊及补焊等

手工电弧焊

接头质量差

用于铸铝件补焊及一般修理

钨极氩弧焊

焊缝金属致密,接头强度高、塑性好,可获得优质接头

应用广泛,可焊接板厚1~20㎜

钨极脉冲氩弧焊

焊接过程稳定,热输入精确可调,焊件变形量小,接头质量高

用于薄板、全位置焊接、装配焊接及对热敏感性强的锻铝、硬铝等高强度铝合金

熔化极氩弧焊

电弧功率大,焊接速度快

用于厚件的焊接,可焊厚度为50㎜以下

熔化极脉冲氩弧焊

焊接变形小,抗气孔和抗裂性好,工艺参数调节广泛

用于薄板或全位置焊,常用于厚度2~12㎜的工件

等离子弧焊

热量集中,焊接速度快,焊接变形和应力小,工艺较复杂

用于对接焊要求比氩弧焊更高的场合

真空电子束焊

熔深大热影响区小,焊接变形量小接头力学性能好

用于焊接尺寸较小的焊件

激光焊

焊接变形小,生产率高

用于需进行精密焊接的焊件

1.气焊

氧-乙炔气焊火焰的热功率低,热量较分散,因此焊件变形大、生产率低。

用气焊焊接较厚的铝焊件时需预热,焊后的焊缝金属不但晶粒粗大、组织疏松,而且容易产生氧化铝夹杂、气孔及裂缝等缺陷。

这种方法只用于厚度范围在0.5~10㎜的不重要铝结构件和铸件的焊补上。

2.钨极氩弧焊

这种方法是在氩气保护下施焊,热量比较集中,电弧燃烧稳定,焊缝金属致密,焊接接头的强度和塑性高,在工业中获得起来越广泛的应用。

钨极氩弧焊用于铝合金是一种较完善的焊接方法,但钨极氩弧焊设备较复杂,不宜在室外露天条件下操作。

3.熔化极氩弧焊

自动、半自动熔化极氩弧焊的电弧功率大,热量集中,热量影响区小,生产效率比手工钨极氩弧焊可提高2~3倍。

可以焊接厚度在50㎜以下的纯铝及铝合金板。

例如,焊接厚度30㎜的铝板不必预热,只焊接正、反两层就可获得表面光滑、质量优良的焊缝。

半自动熔化极氩弧焊适用于定位焊缝、断续的短焊缝及结构形状不规则的焊件,用半自动氩弧焊焊炬可方便灵活地进行焊接,但半自动焊的焊丝直径较细,焊缝的气孔敏感性较大。

4.脉冲氩弧焊

(1)钨极脉冲氩弧焊

用这种方法可明显改善小电流焊接过程的稳定性,便于通过调节各种工艺参数来控制电弧功率和焊缝成形。

焊件变形小、热影响区小,特别适用于薄板、全位置焊接等场合以及对热敏感性强的锻铝、硬铝、超硬铝等的焊接。

(2)熔化极脉冲氩弧焊

可采用的平均焊接电流小,参数调节范围大,焊件的变形及热影响区小,生产率高,抗气孔及抗裂性好,适用于厚度在2~10㎜铝合金薄板的全位置焊接。

5.电阻点焊、缝焊

可用来焊接厚度在4㎜以下的铝合金薄板。

对于质量要求较高的产品可采用直流冲击波点焊、缝焊机焊接。

焊接时需要用较复杂的设备,焊接电流大、生产率较高,特别适用于大批量生产的零、部件。

6.搅拌摩擦焊

搅拌摩擦焊是一种可用于各种合金板焊接的固态连接技术。

与传统熔焊方法相比,搅拌摩擦焊无飞溅、无烟尘,不需要添加焊丝和保护气体,接头无气孔、裂纹。

与普通摩擦相比,它不受轴类零件的限制,可焊接直焊缝。

这种焊接方法还有一系列其它优点,如接头的力学性能好、节能、无污染、焊前准备要求低等。

由于铝及铝合金熔点低,更适于采用搅拌摩擦焊。

(二)铝及铝合金的焊接工艺方法

1、铝合金的气焊

氧-乙炔气焊的热效率低,焊接热输入不集中,焊接铝及铝合金时需采用熔剂,焊后又需清除残渣,接头质量及性能也不高。

因为气焊设备简单,无需电源,操作方便灵活,常用于焊接对质量要求不高的铝合金构件,如厚度较薄的薄板及小零件,以及补焊铝合金构件和铝铸件。

(1)气焊的接头形式

气焊铝合金时,不宜采用搭接接头和T形接头,这种接头难以清理流入缝隙中的残留熔剂和焊渣,应尽可能采用对接接头。

为保证焊件焊接时既焊透又不塌陷和烧穿,可以采用带槽的垫板,垫板一般用不锈钢或纯铜等制成,带垫板焊接可获得良好的反面成形,提高焊接生产率。

(2)气焊熔剂的选用

铝合金气焊时,为了使焊接过程顺利进行,保证焊缝质量,气焊时需要加熔剂来去除铝表面的氧化膜及其他杂质。

气焊熔剂(又称气剂)是气焊时的助熔剂,主要作用是去除气焊过程中生成在铝表面的氧化膜,改善母材的润湿性能,促使获得致密的焊缝组织等。

气焊铝合金必须采用熔剂,一般是在焊前熔剂直接撒在被焊工件坡口上,或者沾在焊丝上加入熔池内。

铝合金熔剂是钾、钠、钙、锂等元素的氯人盐,是粉碎后过筛并按一定比例配制的粉状化合物。

例如铝冰晶石(Na3AlF6)在1000℃进可以熔解氧化铝,又如氯化钾等可使难熔的氧化铝转变为易熔的氯化铝。

这种熔剂的熔点低,流动性好,还能改善熔化金属的流动性,使焊缝成形良好。

铝合金气焊熔剂有含锂熔剂和无锂熔剂两类。

含锂熔剂的氯化锂能改善熔渣的物理性能、降低熔渣的熔点和黏度,能较好地去除氧化膜,适用于薄板和全位置焊接。

但氯化锂价格贵,而且吸湿性强。

不含锂的熔剂熔点高、黏度大、流动性差,易产生焊缝夹渣,适用于厚大件的焊接。

对于搭接接头、不熔透角焊缝和难以完全清理掉残留熔渣的焊缝,以及含镁较高的铝镁合金选用熔剂时,不宜采用含钠组成物的熔剂。

将粉状熔剂和蒸馏水调成糊状(每100g熔剂约加入50mL蒸馏水)涂于焊件坡口和焊丝表面,涂层厚0.5~1.0㎜。

或用灼热的焊丝直接蘸熔剂干粉使用,这样可减少熔池中水分的来源,减少气孔。

调制好的熔剂应在12h内用完。

铝合金气焊熔剂容易吸潮,所以应该对其瓶装密封,以防受潮失效。

焊接时,应先用洁净水或蒸馏水将熔剂调成糊状,然后把这涂在接头上,或者浸涂在焊丝上。

调好的糊状熔剂最好随调随用,不要久放,以免变质。

(3)焊嘴和火焰的选择

铝合金有强烈的氧化性和吸气性。

气焊时,为使铝不被氧化,应采用中性焰或微弱碳化焰(乙炔既过剩的碳化焰),使铝熔池置于还原性气氛的保护下而不被氧化。

严禁采用氧化焰,因为用氧化性较强的氧化焰会使铝强烈氧化,阻碍焊接过程进行;而乙炔过多,游离的氢可能溶入熔池,会促使缝产生气孔,使焊缝疏松。

(4)定位焊缝

为防止焊件在焊接中产生尺寸和相对位置的变化,焊件焊前需要点固焊。

由于铝的线膨胀系数大、导热速度快、气焊加热面积大,因此,定位焊缝较钢件应密一些。

定位焊用的填充焊丝与产品焊接时相同,定位焊接前应在焊缝间隙内涂一层气剂。

定位焊的火焰功率比气焊时稍大。

(5)气焊操作

焊接钢铁材料时,可以从钢材的颜色变化判断加热的温度。

但焊铝时,却没有这个方便条件。

因为铝合金从室温加热到熔化的过程中没有颜色的明显变化,给操作者带来控制焊接温度困难。

但可根据以下现象掌握施焊时机:

(1)当被加热的工件表面由光亮白色变成暗淡的银白色,表面氧化膜起皱,加热处金属有波动现象时,表明即将达到熔化温度,可以施焊;

(6)焊后处理

气焊焊缝表面的残留焊剂和熔渣对铝接头的腐蚀,是铝接头日后使用中引起损坏的原因之一。

在气焊后1~6h之内,应将残留的熔剂、熔渣清洗掉,以防引起焊件腐蚀。

2.铝合金的钨极氩弧焊(TIG焊)

也称为钨极惰性气体保护电弧焊,是利用钨极与工件之间形成电弧产生的大量热量熔化待焊处,外加填充焊丝获得牢固的焊接接头。

氩弧焊焊铝是利用其“阴极雾化”的特点,自行去除氧化膜。

钨极及缝区域由喷嘴中喷出的惰性气体屏蔽保护,防止焊缝区和周围空气的反应。

TIG焊工艺最适于焊接厚度小于3㎜的薄板,工件变形明显小于气焊和手弧焊。

交流TIG焊阴极具有去除氧化膜的清理作用,可以不用熔剂,避免了焊后残留熔剂、熔渣对接头的腐蚀。

接头形式可以不受限制,焊缝成形良好、表面光亮。

氩气流对焊接区的冲刷使接头冷却加快,改善了接头的组织和性能,适于全位置焊接。

由于不用熔剂,焊前清理的要求比其他焊接方法严格。

焊接铝合金较适宜的工艺方法是交流TIG焊和交流脉冲TIG焊,其次是直流反接TIG焊。

通常,用交流焊接铝合金时可在载流能力、电弧可控性以及电弧清理作用等方面实现最佳配合,故大多数铝合金的TIG焊都采用交流电源。

采用直流正接(电极接负极)时,热量产生于工件表面,形成深熔透,对一定尺寸的电极可采用更大的焊接电流。

即使是厚截面也不需预热,且母材几乎不发生变形。

虽然很少采用直流反接(电极接正极)TIG焊方法来焊接铝,但这种方法在连续焊或补焊薄壁热交换器、管道厚在2.4㎜以下的类似组件时有熔深浅、电弧容易控制、电弧有良好的净化作用等优点。

(1)钨极

钨的熔点是340℃,是熔点最高的金属。

钨在高温时有强烈的电子发射能力,在钨电极加入微量稀土元素钍、铈、锆等的氧化物后,电子逸出功显著降低,载流能力明显提高。

铝合金TIG焊时,钨极作为电极主要起传导电流、引燃电弧和维持电弧正常燃烧的作用。

常用钨极材料分纯钨、钍钨及铈钨等。

(2)焊接工艺参数

为了获得优良的焊缝成形及焊接质量,应根据焊件的技术要求,合理地选定焊接工艺参数。

铝合金手工TIG焊的主要工艺参数有电流种类、极性和电流大小、保护气体流量、钨极伸出长度、喷嘴至工件的距离等。

自动TIG焊的工艺参数还包括电弧电压(弧长)、焊接速度及送丝速度等。

工艺参数是根据被焊材料和厚度,先确定钨极直径与形状、焊丝直径、保护气体及流量、喷嘴孔径、焊接电流、电弧电压和焊接速度,再根据实际焊接效果调整有关参数,直至符合使用要求为止。

铝合金TIG焊工艺参数的选用要点如下。

①喷嘴孔径与保护气体流量铝合金TIG的喷嘴孔径为5~22㎜;保护气体流量一般为5~15L/min。

②钨极伸出长度及喷嘴至工件的距离钨极伸出长度:

对接焊缝时一般为5~6㎜,角焊缝时一般为7~8㎜。

喷嘴至工件的距离一般取10㎜左右为宜。

③焊接电流与焊接电压与板厚、接头形式、焊接位置及焊工技术水平有关。

手工TIG焊时,采用交流电源,焊接厚度小于6㎜铝合金时,最大焊接电流可根据电极直径d按公式I=(60~65)d确定。

电弧电压主要由弧长决定,通常使弧长近似等于钨极直径比较合理。

④焊接速度铝合金TIG焊时,为了减小变形,应采用较快的焊接速度。

手工TIG焊一般是焊工根据熔池大小、熔池形状和两侧熔合情况随时调整焊接速度,一般的焊接速度为8~12m/h;自动TIG焊时,工艺参数设定之后,在焊接过程中焊接速度一般不变。

⑤焊丝直径一般由板厚和焊接电流确定,焊丝直径与两者之间呈正比关系。

交流电特点是负半波(工件为负)时,有阴极清理作用,正半波(工件为正)时,钨极因发热量低,不容易熔化。

为了获得足够的熔深和防止咬边、焊道过宽和随之而来的熔深及焊缝外形失控,必须维持短的电弧长度,电弧长度大约等于钨极直径。

为了防止起弧处及收弧处产生裂纹缺陷,有时需要加引弧板和熄弧板。

当电弧稳定燃烧,钨极端部被加热到一定的温度后,才能将电弧移入焊接区。

钨极脉冲惰性气体保护焊扩大了TIG焊的应用范围,特别适用于焊接精密零件。

在焊接时,高脉冲提供大电流值,这是在留间隙的根部焊接时为完成熔透所需的;低脉冲可冷却熔池,这就可防止接头根部烧穿。

脉冲作用还可以减少向母材的热输入,有利于薄铝件的焊接。

交流钨极脉冲氩弧焊有加热速度快、高温停留时间短、对熔池有搅拌作用等优点,焊接薄板、硬铝可得到满意的焊接接头。

交流钨极脉冲氩弧焊对仰焊、立焊、管子全位置焊、单面焊双面成形,可以得到较好的焊接效果。

3.铝合金的熔化极氩弧焊(MIG焊)

也称为熔化极惰性气体保护电弧焊,电弧是在惰性气体保护中的焊件和铝及铝合金焊丝之间形成,焊丝作为电极及填充金属。

由于焊丝作为电极,可采用高密度电流,因而母材熔深大,填充金属熔敷速度快,焊接生产率高。

MIG焊接铝合金通常采用直流反极性,这样可保持良好的阴极雾化作用。

铝合金MIG焊不必用熔剂支队妨碍熔化的气体铝的氧化铝薄膜,这层氧化铝膜的去除是利用焊件金属为负极时的电弧作用。

因此,MIG焊接后不会因没有仔细去除熔剂而造成焊缝金属腐蚀的危险。

焊接薄、中等厚度板材时,可用纯氦保护。

焊前一般不预热,板厚较大时,也只需预热起弧部位。

根据焊炬移动方式的不同,铝合金MIG焊工艺分为半自动MIG和自动MIG焊,对焊工的操作技术水平要求较低,比较容易训练完成。

(1)铝合金半自动MIG焊工艺

半自动焊的焊枪由操作者握持着向前移动。

熔化极半自动氩焊多采用平特性电源,焊丝直径为1.2~3.0㎜。

可采用左焊法,焊炬与工件之间的夹角为75°,以提高操作者的可见度。

多用于点焊、短焊缝、断续焊缝及铝容器中的椭圆形封头、人孔接管、支座板、加强圈、各种内件及锥顶等。

熔化极半自动氩弧焊的点固焊缝应设在坡口反面,点固焊缝的长度为40~60㎜,对于相同厚度的铝锰、铝镁合金,焊接电流应降低20~30A,氩气流量增大10~15L/min。

脉冲MIG焊可以将熔池控制得很小,容易进行全位置焊接,尤其焊接薄板、薄壁管的立焊缝、仰焊缝和全位置焊缝是一种较理想的焊接方法。

脉冲MIG焊电源是直流脉冲,脉冲TIG焊的电源是交流脉冲。

它们的焊接工艺参数基本相同。

(2)铝合金自动MIG焊工艺

由自动焊机的小车带动焊枪向前移动。

根据焊件厚度选择坡口尺寸、焊丝直径和焊接电流等工艺参数。

三.铝及铝合金常见焊接缺陷及原因

(一)焊接缺陷种类

常见的缺陷主要有焊缝成形差、裂纹、气孔、烧穿,未焊透、未熔合、夹渣等。

1.焊缝成形差

焊缝成形差主要表现在焊缝波纹不美观,且不光亮;焊缝弯曲不直,宽窄不一,接头太多;焊缝中心突起,两边平坦或凹陷;焊缝满溢等。

产生原因:

焊接规范选择不当;焊枪角度不正确;焊工操作不熟练;导电嘴孔径太大;焊接电弧没有严格对准坡口中心;焊丝、焊件及保护气体中含有水分

2.气孔

产生原因:

氩气纯度低或氩气管路内有水分、漏气等;焊丝或母材坡口附近焊前未清理干净或清理后又被污物、水分等沾污;焊接电流和焊速过大或过小;熔池保护欠佳,电弧不稳,电弧过长,钨极伸出过长等。

焊接时熔池中的气孔在凝固时未能逸出而留下来所形成的空穴称为气孔。

在MIG焊接过程中,气孔是不可避免的,只能尽量减少它的存在。

在培训的过程中,仰角焊、立向上焊气孔傾向尤为明显,根据DIN30042标准规定,单个气孔的直径最大不能超过0.25α(α为板厚),密集气孔的单个直径最大不超过0.25+0.01α(α为板厚)。

氢是铝及铝合金熔化焊产生气孔的主要原因。

氮不溶于液态铝,铝又不含碳,因此铝合金中不会产生氮气孔和一氧化碳气孔;氧和铝有很大的亲和力,总是以氧化铝的形式存在,所以也不会产生氧气孔;氢在高温时大量的溶于液态铝,但几乎不溶于固态铝,所以在凝固点溶于液体中的氢几乎全部析出,形成气泡。

但铝和铝合金的比重轻,气泡在熔池中的上升的速度较慢,加上铝的导热能力强凝固,不利于气泡的浮出,故铝和铝合金易产生气孔,氢气孔在焊缝内部一般呈白亮光洁状。

氢的来源比较多,主要来自弧柱气氛中的水、焊丝以及母材所吸附水分对焊缝气孔的产生常常占有突出的地位。

    厂房空气中的湿度也影响弧柱气氛。

MIG焊接时,焊是以细小熔滴形式通过弧柱而落入熔池的,由于弧柱温度最高,熔滴比表面积很大,故有利于熔滴金属吸收氢,产生气孔的倾向也更大些。

弧柱中的氢之所以能够形成气,与它在铝合金中的溶解度变化有。

如前段所说,在凝固点时氢的溶解度从0.69突降到0.036ml/100g,相差约20倍(在钢中只相差不到2倍),这是氢容易使焊缝产生气孔的重要原因之一。

    控制了弧柱气氛中的水分后,母材和焊丝所带的氧化膜所吸附的水分成为生成焊缝气孔的主要原因。

在培训期间所使用的焊丝材料为R5087,焊接所用的板材为5083和6082,都是氧化膜不很致密、吸水性强的铝合金,并且母材表面通常会有少量油脂、灰尘等杂。

通过经焊前母材清理和未经清理的焊缝对,清理过的焊缝气孔明显少于未经清理的焊缝气孔。

因此如果焊前没有仔细清理母材表面,产生气孔的倾向将加大。

    另外,保护气体流量不足或过量也会引起气孔的出现。

保护气体流量不足不能排除弧柱气氛中的空气,空气中的水分将分解成氢进入熔池中产生氢气孔;反之保护气体流量过大又会将空气卷入弧柱区和熔池,同样会使焊缝气孔趋势增。

提前送气和焊后延时送气的时间设置对焊接接头气孔的产生也有很大关系。

3.裂纹

产生原因:

焊丝合金成分选择不当;当焊缝中的镁含量小于3%,或铁、硅杂质含量超出规定时,裂纹倾向增大;焊丝的熔化温度偏高时,会引起热影响区液化裂纹;结构设计不合理,焊缝过于集中或受热区温度过高,造成接头拘束应力过大;高浊停留时间长,组织过热;弧坑没填满,出现弧坑裂纹等。

在焊接应力及其他因素共同作用,焊接接头中局部区域的金属原子结合力遭到破坏形成新界面而产生的缝隙称为焊接裂,铝合金焊接裂纹通常都是热裂纹。

根据DIN30042标准规定,所有裂纹都是不允许存在的。

    MIG焊中产生裂纹的主要原因有焊接工艺选择不当,焊缝熔合不良,焊缝深宽比太大,焊缝太窄和焊缝末端弧坑冷却过快等。

尤其是在仰角焊和向下立焊的时候,过窄的焊缝容易产生裂纹,若收弧的时候没有把弧坑填满,同样容易在弧坑处产生裂纹。

在组合接头焊接的时候,拐弯处由于熔合不好也容易出现裂纹。

4.未焊透

产生原因焊接速度过快,弧长过大,焊件间隙、坡口角度、焊接电流均过小,钝边过大;工件坡口边缘的毛刺、底边的污垢焊前没有除净;焊炬与焊丝倾角不正确。

5.未熔合

焊接时,焊道与母材之间或焊道与焊道之间未能完全熔化结合的部分称为未熔合。

未熔合的存在减小了焊缝有效工作面积,使得焊缝的承载通过降低,并易在未熔合处引起应力集中。

在DIN30042标准中规定,未熔合在部件生产中是不允许的。

    焊接区表面有氧化膜,焊接的时候热输入量不足未能将其打破,容易引起未熔合现象;焊接的时候焊丝没有走在熔池前沿的1/3处容易引起未熔合;焊接接头处接头打磨的夹角不够大,焊丝伸出长度太大也引起接头处未熔合。

6.咬边

产生原因:

焊接电流太大,电弧电压太高,焊炬摆幅不均匀,填丝太少,焊接速度太快。

由于焊接参数选择不当,或操作技术不正确,沿焊趾的母材部位产生沟槽或凹陷称为咬边。

咬边使母材金属的有效工作截面减小,减弱了焊接接头的强度,并且在咬边处会引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构破坏。

根据DIN30042标准规定,咬边长缺陷(100mm内长度>25mm的一个或多个缺陷)的深度不能>0.2mm,短缺陷(100mm风长度<25mm的一个或多个缺陷)的深度不能>0.5mm。

产生咬边的原因主要是焊接规范参数过大,热输入量过大,速度过快,焊丝还来不及将弧坑填充满应离开熔池,便会出现咬边;其次,施焊时焊枪角度太大,摆动没有到位同样会引起咬边;如果没有控制好速度和摆动位置都会出现咬边。

咬边是铝合金焊接中比较常见的缺陷

(二)铝及铝合金焊接缺陷的原因分析

气孔是铝合金焊接过程中最容易出现的焊接缺陷,无论工艺措施多么严格到位,要想完全做到克服气孔是很难得,气孔从位置上可区分为表面气孔和内部气孔,从性质上可区分为密集气孔和离散气孔,气孔产生的原因有外部原因和内在原因,外在原因主要是操作、环境方面的因素,内在原因主要是材料、位置方面本身造成的结果。

1.外在原因导致的气孔

(1)环境湿度导致的气孔

铝合金表面的氧化膜有很强的吸水性,当环境湿度很大时,侵入铝合金表层的水很大,当电弧产生时,水分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 经济学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1