每日科普.docx
《每日科普.docx》由会员分享,可在线阅读,更多相关《每日科普.docx(12页珍藏版)》请在冰豆网上搜索。
每日科普
每日科普-小学数学13种典型例题巧算口诀
(一)
1
正方体展开图
正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:
1
141型
中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2
231型
中间一行3个作侧面,共3种基本图形。
3
222型
中间两个面,只有1种基本图形。
4
33型
中间没有面,两行只能有一个正方形相连,只有1种基本图形。
2
和差问题
已知两数的和与差,求这两个数。
【口诀】:
和加上差,越加越大;
除以2,便是大的;
和减去差,越减越小;
除以2,便是小的。
例:
已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
3
鸡兔同笼问题
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:
鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12
4
浓度问题
(1)加水稀释
【口诀】:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:
有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:
20X15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
【口诀】:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:
有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:
20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
5
路程问题
(1)相遇问题
【口诀】:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:
甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过。
即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。
即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
例:
姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
先走的路程,为3X2=6(千米)
速度的差,为6-3=3(千米/小时)。
所以追上的时间为:
6/3=2(小时)。
6
和比问题
已知整体求部分。
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:
甲乙丙三数和为27,甲;乙:
丙=2:
3:
4,求甲乙丙三数。
分母比数和,即分母为:
2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,所以甲数为27X2/9=6,乙数为:
27X3/9=9,丙数为:
27X4/9=12。
7
差比问题(差倍问题)
【口诀】:
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:
甲数比乙数大12,甲:
乙=7:
4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:
4X7=28,乙数为:
4X4=16。
每日科普-小升初数学易错点汇总
一、分数运算当中的约分问题
约分是分数运算这块最容易错的一个点,许多同学在做分数运算题的时候,计算方法什么的都是对的,结果因为没有约分被扣掉了大量的分数。
那么怎么去尽量避免约分方面的问题呢?
我们通常在做分数的乘除运算时,当运算变成乘法后,首先进行交叉约分,约干净后直接就可以根据分子乘分子做分子,分母乘分母做分母的运算法则写答案了;对于分数的加减法运算,通分后变成同分母分数加减法,最后结果约到最简。
二、化简比和求比值问题
化简比的结果是一个比(最简整数比),求比值的结果是一个数,当我们在做一个题前首先先看清题意,然后再开始做;
化连比和求连比也是两个很不同的概念,化连比是要把一个连比化成最简整数连比,求连比是根据两个两量之比求出三量之比,求连比需要把相同量找出来,并把它们变成同一个数(找最小公倍数,可能会省掉化连比),然后根据比的基本性质把剩下两个量跟着发生变化,然后完成求连比。
三、枚举法的相关问题
在枚举法这块,同学们容易犯的一个错误是“重复”,搞不清楚什么时候要考虑顺序,什么时候不考虑顺序,请注意,如果题目中涉及颜色、大小、种类这些东西,一般是要考虑顺序的;如果题目中没有涉及颜色、大小、种类这些,是不需要考虑顺序的,应避免重复。
四、排列和组合的相关问题
排列和组合,排列是选出人来排队,是有顺序的;组合是选出人来就可以了,没有顺序之分。
比如说从5种种子里面选出3种分别种在不同的三块土地上,问有多少种不同的种法?
这个题准确的说是分两步进行,第一步,从5里选3,第二步,3种种子种在3块不同的土地上,相当于先从5种里选出3种,再给这三种种子全排列,两者相乘,其实发现结果就是从5种里面选出3种种子排列的排列数。
五、列方程组解应用题
列方程组解应用题这块,要先把方程组列出来,所以找对等量关系是很重要的,步骤为:
审题、设未知数、列方程、解方程、写答案。
每日科普-鸡兔同笼巧解答
鸡兔同笼应用题解答技巧汇总
【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:
假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)
假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?
解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)
兔数=35-23=12(只)
也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)
鸡数=35-12=23(只)
答:
有鸡23只,有兔12只。
例22亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?
解此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有
白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)
答:
白菜地有10亩。
例3李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。
问作业本和日记本各买了多少本?
解此题可以变通为“鸡兔同笼”问题。
假设45本全都是日记本,则有
作业本数=(69-0.70×45)÷(3.20-0.70)=15(本)
日记本数=45-15=30(本)
答:
作业本有15本,日记本有30本。
例4(第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
解假设100只全都是鸡,则有
兔数=(2×100-80)÷(4+2)=20(只)
鸡数=100-20=80(只)
答:
有鸡80只,有兔20只。
例5有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?
解假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。
因此,共有小和尚(3×100-100)÷(3-1/3)=75(人)
共有大和尚100-75=25(人)
答:
共有大和尚25人,有小和尚75人。
钟表问题
钟表行程问题是研究钟表上的时针和分针关系的问题,常见的有两种:
⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;
⑵研究有关时间误差的问题。
在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.
例题1:
4时与5时之间,什么时刻时钟的分针和时针反向成一条直线?
解答:
我们从4时开始让时针和分针追及,分针和时针成一直线,分针比时针多走50格,每分钟多走1-1/12=11/12格,则50÷11/12=54又6/11分
答:
4点54又6/11分时钟的分针和时针成一直线。
例题2:
当钟表上4时10分时,时针与分针的夹角是多少度?
解答:
分针每分钟走360÷60=6度,时针每分钟走30度÷60=0.5度,4点整分针与时针相差120度,从4点开始追及,10分钟后分针比时针多走(6-0.5)×10=55度。
120度-55度=65度。
答:
当钟表上4时10分时,时针与分针的夹角是65度。
扶梯问题
与流水行船不同的是,自动扶梯上的行走速度有两种度量,一种是“单位时间运动了多少米”,一种是“单位时间走了多少级台阶”,这两种速度看似形同,实则不等,拿流水行船问题作比较,“单位时间运动了多少米”对应的是流水行程问题中的“船只顺(逆)水速度”,而“单位时间走了多少级台阶”对应的是“船只静水速度”,一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即“单位时间走了多少级台阶”,所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单。
例题1:
小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。
已知该自动扶梯共有150级阶梯,每秒运行1.5级阶梯,问警察能否在自动扶梯上抓住小偷?
分析:
全部以地板为参照物,那么小偷速度为每秒1.5级阶梯,警察速度为每秒2.5级阶梯。
警察跑上电梯时相距小偷1.5×30=45级阶梯,警察追上小偷需要45秒,在这45秒内,小偷可以跑上1.5×45=67.5级阶梯,那么追上小偷后,小偷在第112~第113级阶梯之间,没有超过150,所以警察能在自动扶梯上抓住小偷。
例题2:
在商场里甲开始乘自动扶梯从一楼到二楼,并在上向上走,同时乙站在速度相等的并排扶梯从二层到一层。
当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,那么,自动扶梯不动时从下到上要走多少级?
分析:
向上走速度为甲和自动扶梯的速度和,向下走速度为甲和自动扶梯的速度差。
当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,60÷80=3/4,这说明甲乙处于同一高度时,甲的高度是两层总高度的3/4。
则甲和自动扶梯的速度和与自动扶梯的速度之比是3/4:
(1-3/4)=3:
1,即甲的速度与自动扶梯速度之比2:
1,甲和自动扶梯的速度差与自动扶梯的速度相等。
向下走速度向上走速度的1/3,所用时间为向上走的3倍,则甲向下走的台阶数就是向上走台阶数的3倍.因此甲向上走了80÷(3+1)=20级台阶。
甲的速度与自动扶梯速度之比2:
1,甲走20级台阶的同时自动扶梯向上移动了10级台阶,因此如果自动扶梯不动,甲从下到上要走20+10=30级台阶。
例题3:
商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?
分析:
因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可见部分有80-20=60(级)。
浓度问题
例1 爷爷有16%的糖水50克,
(1)要把它稀释成10%的糖水,需加水多少克?
(2)若要把它变成30%的糖水,需加糖多少克?
解:
(1)需要加水多少克?
50×16%÷10%-50=30(克)
(2)需要加糖多少克?
50×(1-16%)÷(1-30%)-50=10(克)
答:
(1)需要加水30克,
(2)需要加糖10克。
例2 我们把50%的盐水1千克与20%的盐水4千克混合,求混合后溶液浓度?
求出第一份溶液中溶质(即食盐)质量,50%×1=0.5千克;
第二份溶液中溶质质量,20%×4=0.8千克;
则总溶质质量为0.5+0.8=1.3千克;
总溶液质量为1+4=5千克。
于是,混合后溶液的浓度为:
=26%。
例3 有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
解析:
根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。
因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:
600×(1-7%)=558(克)
现在糖水的质量 :
558÷(1-10%)=620(克)
加入糖的质量 :
620-600=20(克)
答:
需要加入20克糖。
例4 现有浓度为10%的盐水20千克。
再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?
解析:
这是一个溶液混合问题。
混合前、后溶液的浓度改变了,但总体上溶质及溶液的总质量没有改变。
所以,混合前两种溶液中溶质的和等于混合后溶液中的溶质的量。
20千克10%的盐水中含盐的质量:
20×10%=2(千克)
混合成22%时,20千克溶液中含盐的质量:
20×22%=404(千克)
需加30%盐水溶液的质量:
(4.4-2)÷(30%-22%)=30(千克)
答:
需加入30千克浓度为30%的盐水,可以得到浓度为22%的盐水。
例5 将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?
解析:
根据题意,将20%的盐水与5%的盐水混合配成15%的盐水,说明混合前两种盐水中盐的质量和与混合后盐水中盐的质量是相等的。
可根据这一数量间的相等关系列方程解答。
解:
设20%的盐水需x克,则5%的盐水为600-x克,那么
20%x+(600-x)×5%=600×15%
X =400
600-400=200(克)
答:
需要20%的盐水400克,5%的盐水200克。