Multisim积分微分实验报告.docx

上传人:b****9 文档编号:23404585 上传时间:2023-05-16 格式:DOCX 页数:10 大小:190.82KB
下载 相关 举报
Multisim积分微分实验报告.docx_第1页
第1页 / 共10页
Multisim积分微分实验报告.docx_第2页
第2页 / 共10页
Multisim积分微分实验报告.docx_第3页
第3页 / 共10页
Multisim积分微分实验报告.docx_第4页
第4页 / 共10页
Multisim积分微分实验报告.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

Multisim积分微分实验报告.docx

《Multisim积分微分实验报告.docx》由会员分享,可在线阅读,更多相关《Multisim积分微分实验报告.docx(10页珍藏版)》请在冰豆网上搜索。

Multisim积分微分实验报告.docx

Multisim积分微分实验报告

实验课程|电路分析实验-EDA局部

j

一、实验目的

1.掌握一阶RC微分、积分电路的组成与工作原理;

2.掌握运用MULTISUM软件实现一阶有源RC微分、积分电路的设计方法;

3.掌握运用MULTISUM软件实现RC微分、积分电路的测试、分析方法;

4.培养学生对知识的综合运用能力,提高学生创新能力。

二、实验性质

设计性实验

三、设计报告

无源RC微分积分电路

实验原理

RC电路对输入的脉冲信号的响应变化为电容的充放电过程造成的,对于线性时不变电阻,在电容的充放电过程中VCR关系可表示为

dqd(CiL)du=—=—__-=C——Wdtdtdt

RC电路对输入的脉冲信号的响应变化为电容的充放电过程造成的,对于线性时不变

电阻,在电容的充放电过程中VCR关系可表示为

7普

du

这说明电容中的电流与电压的微分成正比,电容电压与电容中电流的积分成正比。

把一个电容和一个电阻串联,输入时变信号为鼓励信号,那么可得电阻R两端的电

压和电容C两端的电压分别满足

以上公式说明,当以时变信号U;作为输入时,电阻两端电压

与山对时间的微分成正比,电容两端的电压与W对时间的积分成正比。

那么选取电阻两端电压比•为输出信号,构成微分电路;选取电容两端电压U[为输出信号,构成积分电路。

积分电路和微分电路的特点微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变局部,即只有输入波形发生突变的瞬间才有输出。

而对恒定局部那么没有输出。

输出的尖脉冲波形的宽度与R*C有关〔即电路的时间常数〕,R*C越小,尖脉冲波形越尖,反之

那么宽。

此电路的R*C必须远远少于输入波形的宽度,否那么就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。

时间常数R*C构成积分电路的条件是电路的时间常数必须要大于积分电路能将方波转换成三角波。

积分电路具有延迟作用。

(1)一阶无源微分电路

参数选择原那么:

RC<

理由:

由微分电路公式推导过程中可推得,

假设要使电容电压和输入电压近似相等,那么必须先经过电容的瞬态响应,当输入的

时变信号为方波时,假设要使电容的瞬态响应可以被忽略,那么时间常数〔R*C〕的

值必须远小于方波周期,此时电容充放电速度极快,电容两端电压可近似等于输入电压。

(2)仿真实验

OfrCillQiCOp#XSCI

F2-TI

Tan'ifibd-iM

ChtannalA

CJhanr-^lE>

兰3l—

XpCMk.(D«tf)■0

Vpg®押]•_0

甲|wt-_lDhffJi0

AG■IDt]

Xng阳MorifioixtoINo<-He-

4匸

ChrsTineH—d0000V>Q,VD.DCiaV

Clinmer_B-lO^OV-ICI.IIKJDv

D.OODV

TimeOi.iOMfiD.oaa■DLOOQ3

Rrjfcia.pV/I>v

[岁匸A(J<1Gi'AAre

[过V/OV

Tr-l^gar

叵]岸[*

1

La^:

〔2〕一阶无源积分电路

参数选择原那么:

RC>>T方波

理由:

由积分电路公式推导过程中

可推得,假设要使电阻电压和输入电压近似相等,那么电容的充放电过程需要被忽略。

当输入信号为方波时,配置电路时间常数〔R*C〕远大于方波周期,那么电容充放电速度极慢,可以被忽略。

 

优选.

 

Uo(t)

1

RQ

0Edt

E

R1C

RC有源一阶积分电路

有源RC微分积分电路相较无源来说,多了一个反向放大器,因为运算放大器和三极管等需外接直流电源才能正常发挥作用的器件被称为有源器件,所以此时电路为有源微分积分电路。

1.实验原理

如图2.2所示为根本积分器电路。

假设集成运放满足理想运放条件,那么该运放应具有"虚断'‘与”虚短'’的特点,结合电容的伏安特性,可推出其输入、输出关系为:

uoRQUi(t)dtUo(0)

式中Uc(O)是t=0时刻电容C两端的电压值,即初始值。

如果ui(t)是幅值为E的阶跃电压,并设Uc(0)=0,那么

即输出电压uo(t)随时间增长而线性下降。

显然RC的数值越大,到达给定的uo值所需的时间

就越长。

积分输出电压所能到达的最大值受集成运放最大输出围的限值。

输入电压经过RC电路的积分还经过反向放大器放大才得到输出电压Uo,因为反向放大器的存在电阻R作为输入电阻,R两端的电压等于输入电压Ui,而不是无源状态下的近似等于,所以此时积分关系严格成立。

2.电路元件:

一个反向放大器,一个1kQ的定值电阻〔输入电阻〕,一个0.1尸的电容

3.仿真电路

输出波形

OsciNoscope-X£C1X

三角波

 

RewCM

T1*+

TimeChannd_A

1J.MLffli5.B7BV

13.501trn5-670V

0.000s0.000V

Channe^_B•鼻倾V乳賢。

V0.000V

G**

T2rTl

Timbase

channelA

OianneiB

SengMOUWSSca-e:

10

Scale;5’J/Om

XpOS^DIV):

0YpOS.'tDIV):

1-

YfJW.Wrv):

|o

[y/t]Adcf

5ACQCM-]

丨AC丨*ilDCII-

Exi.Lnyyu'

Trrgger

Edge:

izrN>

aE>t

Level:

0

1V

5ingip

NtfmslAutu

[ncm|

正弦

 

应用

1.积分电路的应用很广,它是模拟电子计算机的根本组成单元。

在控制和测量系统中也常常用到积分电路。

此外,积分电路还可用于延时和定时。

在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成局部。

2.微分电路可把矩形波转换为尖脉冲波,电路的输出波形只反映输入波形的突变部微分电路分,即只有输入波形发生突变的瞬间才有输出.而对恒定局部那么没有输出.输出的尖脉冲波形的宽度与R*C有关〔即电路的时间常数〕.微分电路使输出电压与输入电压的时间变化率成比例的电路.微分电路主要用于脉冲电路、模拟计算机和测量仪器中.最简单的微分电路由电容器C和电阻器R组成。

设计总结

通过这一次的实验,我初步了解了积分微分电路,了解了积分微分原理反相运放的作用。

源积分微分电路应用广泛。

在控制系统中,更是比比皆是。

学好积分微分电路,为之后打好根底。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 城乡园林规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1