4第四节毒作用机制1.docx

上传人:b****9 文档编号:23383256 上传时间:2023-05-16 格式:DOCX 页数:27 大小:39.62KB
下载 相关 举报
4第四节毒作用机制1.docx_第1页
第1页 / 共27页
4第四节毒作用机制1.docx_第2页
第2页 / 共27页
4第四节毒作用机制1.docx_第3页
第3页 / 共27页
4第四节毒作用机制1.docx_第4页
第4页 / 共27页
4第四节毒作用机制1.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

4第四节毒作用机制1.docx

《4第四节毒作用机制1.docx》由会员分享,可在线阅读,更多相关《4第四节毒作用机制1.docx(27页珍藏版)》请在冰豆网上搜索。

4第四节毒作用机制1.docx

4第四节毒作用机制1

第四章毒作用机制

外源化学物对生物机体的毒作用要紧取决于机体暴露的程度与途径。

*毒物作用进程涉及多个步骤:

接触吸收转运靶部位分子结构转变,功能紊乱修复修复失调毒性效应

*多数毒物发挥毒性作用至少经历4个进程:

一、经吸收进入机体的毒物通过量种屏障转运至一个或多个靶部位;

二、进入靶部位的终毒物与内源靶分子发生交互作用;

3、毒物引发机体分子、细胞、组织水平功能和结构的紊乱;

4、机体启动不同水平的修复机制应付毒物对机体的作用,当机体修复功能低下或毒物引发的功能和结构紊乱超过机体的修复能力时,机体显现组织坏死、癌症和纤维化等毒性作用。

*说明毒作用机制具有重要意义:

一、为更清楚地说明描述性毒理学资料、评估特定外源化学物引发有害效应的概率、制定预防策略、设计危害程度较小的药物和工业化学物和开发对靶生物具有良好选择毒性的杀虫剂等提供理论依据;

二、有利于人们对机体大体生理和生化进程和人类某些重要疾病病理进程的进一步熟悉。

大多数毒物的毒作用机制尚未完全说明。

由于有毒化学物种类和数量较多,不同种类毒物作用机制不同。

*研究毒性机制应明确以下几点:

一、毒性效应是由毒物引发正常细胞发生生理和生化改变的结果.

二、毒性效应的程度除毒物本身外,还与剂量及靶部位有关.

3、靶组织和靶器官具有代偿能力,可超常发挥解毒功能.

4、毒效应包括一样毒性效应和特殊毒性效应研究

*研究中毒机制步骤:

一、整体动物有无毒性

二、找出靶器官、靶组织

3、进一步找出受损的细胞、亚细胞

4、分子水平:

DNA、RNA或蛋白质

复杂的毒性机制可涉及多个层次和步骤,毒物被转运到一个或多个靶部位,毒物或代谢产物与内源性靶分子彼此作用。

毒物引发的靶分子结构改变或功能紊乱超过修复能力或修复本身障碍时,即产生毒性效应机制毒理学(Mechanistictoxicology)

第一节毒物ADME进程和靶器官

毒效应强度取决于:

终毒物在其作用靶器官的浓度和持续时刻。

靶位点学说:

毒物产生毒性作用的位点,称为靶位点。

靶位点:

接触污染物的部位;污染物转化、积存部位。

终毒物:

是指与内源靶分子(如受体、酶、DNA、微丝蛋白、脂质)反映或严峻地改变生物学(微)环境、启动结构和(或)功能改变而表现出毒性的物质。

能够是机体接触的化学物原型或其代谢产物,也能够是毒物在体内生物转化进程中生成的活性氧、活性氮或内源性分子。

终毒物在靶分子上的浓度取决于:

毒物在靶部位浓度的增减进程的相对有效性,图4-1。

一、从接触部位进入血液循环

(一)毒物的吸收

毒物的吸收:

毒物从接触部位进入血液循环的进程。

多数毒物透过细胞扩散穿越上皮屏障抵达毛细血管。

阻碍毒物吸收率的因素:

与在其吸收表面的浓度有关,要紧取决于1)暴露速度2)化学物的溶解度3)暴露部位的面积4)发生吸收进程的上皮特点(如角质厚度)5)上皮下微循环6)毒物理化特性(脂溶性是最重要的理化特性,脂溶性化学物比水溶性的更易吸收)

(二)毒物进入体循环前的排除

毒物从暴露部位转运到体循环进程中可能被排除。

如从胃肠道吸收的化学物进入体循环散布前,先通过胃肠道粘膜细胞、肝脏和肺。

肠上皮、肝细胞含有丰硕的药物代谢酶和药物转运蛋白。

进入血液循环前,部份毒物在药物转运蛋白作用下从肠上皮细胞迅速泵回肠腔,部份毒物在肠和肝药物代谢酶作用下迅速代谢,最终只有一部份毒物穿过黏膜屏障进入体循环。

例:

乙醇、吗啡、锰

二、从血液循环进入靶部位

毒物从血液循环进入细胞间隙并进入细胞。

血浆中溶解的外源化学物通过毛细血管内皮经水相细胞间隙、穿细胞孔道、穿越细胞膜进行扩散。

阻碍毒物散布的因素:

1)脂溶性,脂溶性化学物易于扩散并迅速进入细胞,高度离子化和亲水性局限于细胞外空间。

2)分子大小,3)分子形状,4)电离度

(一)增进毒物散布的靶部位的机制

增进因素有:

一、毛细血管内皮的多孔性二、专一化的膜转运

3、细胞器内的蓄积4、可逆性细胞内结合

一、毛细血管内皮的多孔性

肝窦、肾小管周围毛细血管具有较大孔道(直径50-150nm),乃至蛋白质结合的外源化学物能够通过,有利于化学物在肝脏和肾脏的蓄积。

二、专一化的膜转运

专一化离子通道,膜转运蛋白可转运毒物进入细胞内靶部位。

3、细胞器内的蓄积

具有可质子化的胺基和亲执行的两性外源化学物蓄积在溶酶体和线粒体中,并引发不良效应。

胺与溶酶体磷脂结合减弱溶酶体降解作用,引发磷脂沉着症。

线粒体中的蓄积考离子渗透作用实现。

4、可逆性细胞内结合

黑色素(细胞内多聚阴离子芳香族聚合物),可结合有机和无机阳离子及多环芳烃等。

黑色素结合毒物释放致使氯丙嗪和氯喹视网膜毒性和锰引发的黑质神经元损害和黑色素瘤。

(二)妨碍毒物散布到靶部位的机制

阻碍毒物向特定部位散布的因素:

一、血浆蛋白结合

二、专一化屏障

3、贮存部位的散布

4、与细胞内结合蛋白结合

五、从细胞内排出

一、血浆蛋白结合。

与血浆蛋白的结合推延并延长了毒物的效应和排出。

外源化学物与血浆高分子量蛋白质或脂蛋白结合,无法扩散透过毛细血管,及时透过孔道离开血液,也难渗透通过细胞膜。

要想通过血液进入细胞,必需与蛋白质解离。

二、专一化屏障。

1)脑组织毛细血管内皮细胞缺乏孔道,因此谁渗透性极低。

这种血脑屏障阻止亲水化学物进入脑组织。

2)生殖细胞与毛细血管之间被多层细胞分隔开,精母细胞被其他细胞包裹,形成血睾屏障,水溶性毒物难以进入生殖细胞。

3)亲水性毒物收到胎盘屏障限制,难以通过。

4)所有屏障对脂溶性毒物均没有屏障作用。

3、贮存部位的散布。

外源化学物蓄积在某些组织不发生毒性效应。

氯代烃杀虫剂蓄积在脂肪细胞中,减少在其靶部位的浓度,起到爱惜作用,但当饥饿时引发脂肪快速消耗,氯代烃杀虫剂从头进入人体循环并散布至靶部位——神经组织。

这可能是暴露于杀虫剂的鸟类迁移期间和冬季食物受限时死亡的要紧缘故。

氯代烃杀虫剂,卤代烃,烃分子中的氢原子被原子取代后的称为卤代烃(halohyrocarbon),简称卤烃。

卤代烃的为:

(Ar)R-X,X可看做是卤代烃的,包括F、Cl、Br、I。

许多卤代烃可用作灭火剂(如)、冷冻剂(如)、镇痛剂(如,现已不利用)、杀虫剂(如,现已禁用),和高分子工业的原料(如、)。

4、与细胞内结合蛋白结合。

与细胞内非靶部位的结合也能临时减少毒物在靶部位的浓度。

镉不是人体的必需元素。

人体内的镉是诞生后从外界环境中吸取的﹐要紧通过食物﹑水和空气而进入体内蓄积下来。

镉和镉化合物引发的中毒。

有急性﹑慢性中毒之分。

吸入含镉气体可致呼吸道病症﹐经口摄入镉可致肝﹑肾病症。

金属硫蛋白是一种富含半胱氨酸的胞浆蛋白,镉进入血液后迅速与金属巯蛋白(metallothionein,MT)结合形成镉金属巯蛋白(MTCd),约70%在红细胞中,30%在血浆中。

在急性镉中毒是金属硫蛋白与镉结合能够减轻镉对细胞的毒性作用。

五、从细胞内排出。

细胞内毒物能够转运会细胞外间隙。

这种现象发生于脑毛细血管内皮细胞。

这些细胞在毛细血管内皮腔膜上含有一种膜转运蛋白——P蛋白,是多药耐药基因表达的。

P蛋白能够将化学物从细胞内排出,对血--脑屏障有重要作用。

卵母细胞、肠上皮细胞、肝细胞和肾小管上皮细胞均表达丰硕的P蛋白。

胎盘组织的P蛋白对组织环境致畸物通过胎盘屏障引发对胎儿的损害有重要的爱惜作用。

多药耐药性(MDR)是指对一种具有耐药性的同时,对其他结构不同,作用靶点不同的抗肿瘤药物也具有耐药性。

多药耐药性是致使抗感染药物医治和肿瘤化疗失败的重要缘故之一,2020年显现的“”也是多药耐药性的一种。

多药耐药性的产生是由于解除药物活性的分子发生变异或过度表达引发的。

多药耐药基因:

与发生多药耐药性有关的基因,它编码一种需能量的排出泵(P-糖蛋白质),对疏水性细胞毒性药物起作用,如:

多柔比星(阿霉素)、长春新碱、依托泊苷及紫杉酚。

在许多肿瘤细胞株和肿瘤标本中P-糖蛋白质表达升高。

(三)排泄与重吸收

一、排泄

排泄,指外源化学物及其代谢产物从血液中排除并返回外界环境的进程。

是排除毒物的物理机制,生物转化是化学机制。

排泄途径与速度取决于毒物的理化性质。

*什么缘故要紧排泄器官(肝、肾)只能有效清除亲水性和离子化的化学物(有机酸、有机碱)。

1)只有溶于血浆的化学物可通过肾小球滤过

2)肝细胞和肾近曲小管的转运蛋白专一性排泄高亲水性的有机酸和有机碱

3)只有亲水性化学物无约束地溶于尿与胆汁

4)脂溶性化学物易于通过细胞扩散而被重吸收

*非挥发性高亲脂性化学物(多氯联苯、氯代烃杀虫剂)无有效排泄机制。

缘故:

1)这些物质能抗击生物转化,排除进程十分缓慢;2)机体重复暴露是,易于在体内蓄积。

排除进程(效率不高):

1)乳汁排泄,2)与胆汁胶团和磷脂囊泡结合从胆汁排泄,3)从肠道排泄.

多氯联苯:

联苯苯环上的氢被氯取代而形成的多氯化合物,对生物体有积蓄性迫害作用。

属于,容易积存在脂肪组织,造成脑部、皮肤及内脏的疾病,并阻碍神经、生殖及免疫系统。

二、重吸收

转运至肾小管的毒物可穿过肾小管细胞扩散会小管外周毛细血管。

小管液的重吸收增进这一进程。

经重吸收的进程需要化学物具有脂溶性。

有机酸和有机碱的扩散与离子化程度呈负相关。

弱有机酸(水杨酸、苯巴比妥)和有机碱(苯丙胺、奎尼丁)的离子化进程与小官也pH有关。

尿液的酸化有利于有机碱排泄,尿液碱化有利于有机酸的排除。

铬酸盐和钼酸盐通过硫酸盐转运蛋白重吸收,砷酸盐通过磷酸盐转运蛋白重吸收。

胆汁、胃肠排泄,唾液腺和外分泌腺分泌最后转运到胃肠道的毒物,能够通过小肠粘膜扩散而重吸收。

因为分泌到胆汁的化学物常是有机酸,只有那些在肠腔中能转变成脂溶性较强的化学物才可能在肠道重吸收。

水杨酸是医药、香料、染料、橡胶助剂等的重要原料。

在医药工业中,水杨酸本身用作消毒防腐药,用于局部角质增生及皮肤霉菌感染。

作为医药中间体,用于、利、)、、、、、、、、等药物的生产。

苯巴比妥1.镇定:

如焦虑不安、烦躁、、高血压、功能性恶心、小儿幽门痉挛等症。

2.安息:

偶用于顽固性失眠症,但醒后往往有倦怠、思睡等后遗效应。

3.抗惊厥:

经常使用其对抗中枢兴奋药中毒或、破伤风、脑炎、脑出血等疾病引发的惊厥。

4.抗:

用于癫痫大发作的防治,作用显现快,也可用于癫痫持续状态。

5.麻醉前给药。

6.与配伍应用,以增强其作用。

7.医治新生儿核黄疸。

苯丙胺(Amphetamine)是一种中枢兴奋药(类中枢兴奋药)及抗药。

因具有成瘾性,而被列为毒品(苯丙胺类)。

三、增毒与解毒

(一)终毒物的形成

终毒物:

是指与内源靶分子(如受体、酶、DNA等)反映或严峻地改变生物学(微)环境,启动结构和(或)功能改变而表现出毒性的物质。

终毒物在其作用位点的浓度及持续时刻决定了毒效应的强度。

增毒(toxication)或代谢活化(metabolicactivation):

外源化学物经生物转化使其毒性增强,乃至可产生致畸、致癌效应的进程。

经税务转化成为终毒物的进程。

增毒进程主若是使外源化学物转变成:

亲电子剂/亲电物(electrophiles)

自由基(freeradicals)

亲核物(nucleophiles)

氧化还原性反映物(redox-activereductants)

一、亲电子剂/亲电物的形成(formationofelectraophiles)

亲电物(electrophiles):

是一类缺少电子而使整个分子部位或全数带正电的物质.

亲电物可与含电子的亲核物共享电子对而产生中毒反映,常常是外源化学物经Cyp450或其他酶氧化成酮、环氧化物、不饱和酮和醛、醌和酰卤化物等物质.

阳性亲电物常由化学键断裂而形成.

二、自由基

自由基(freeradicals):

是指独立游离存在的带有不成对电子的分子、原子或离子.

自由基通过同意或失去一下电子,或由化合物的共价键发生均裂而形成.

特点:

1)具有顺磁性.2)化学性质十分活泼.3)反映性极高,半减期极短,作用半径短.

自由基在生物体内来源有:

一是细胞正常生理进程产生;二是化学毒物在体内代谢进程产生。

许多外来化合物可通过各类不同途径产生自由基,但其中最要紧的途径是通过氧化还原反映(redoxcycling)。

它通过加入一个单电子使化学物还原为不稳固的中间产物,随后那个电子转移给分子氧而形成超氧阴离子自由基(O2-·),而中间产物那么再生为原化学物。

如:

百草枯(PQ++)、阿霉素(DR)和硝化呋喃托英(NF)可从还原酶同意一个电子形成自由基。

*自由基的类型(typesoffreeradicals)

活性氧(reactiveoxygenspecies,ROS):

一类化学性质活泼的含氧功能基团的物质。

包括:

❖单线态氧❖超氧阴离子自由基(O2·)❖羟基自由基(·OH)❖过氧化氢(H2O2)

❖臭氧(O3)❖氮氧化物(NOX)❖次氯酸(HOCl)

*自由基的来源(sourcesoffreeradicals)

1)生物系统产生的自由基

❖胞浆中的小分子:

自氧化促使氧还原,产生氧自由基

❖胞浆蛋白质:

xanthineoxidase、dopamine-β-hydroxylase、D-aminoacidoxidase、andfattyacylCoAoxidase都可产生ROS

❖膜酶活性:

lipoxygenase、cycloxygenase❖吞噬细胞的吞噬进程及呼吸暴发(respiratoryburst)

❖过氧化酶体❖线粒体电子传递进程能生成ROS❖微粒体电子传递系统

3、亲核物

是毒物活化作用较少见的一种机制。

硒化氢是由亚硒酸盐与谷胱甘肽或其他巯基反映形成的一种强亲核物。

一氧化碳经由氧化取卤反映而形成的毒性代谢产物。

4、活性氧化还原产物

最活泼的代谢物是缺电子的分子或分子片段,如亲电子物或中性物,或阳性物

➢多数亲核物需转化成亲电子物后才能反映

➢带一个多余电子的自由基在HOOH的断裂,形成中性.OH而产生毒性作用

(二)解毒作用

解毒(detoxication):

是指通过生物转化而将终毒物排除,或阻止毒性产物形成的进程

❖在某些情形下,解毒可能与中毒竞争同一化学物

依照毒物化学性质,解毒途径可分为:

一、无功能基团毒物的解毒

无功能基团化学物(苯和甲苯)+功能基团(羟基和羧基)——含功能基团产物+内源性酸如葡萄糖醛酸、硫酸或氨基酸——不活泼的、高度亲水的有机酸排出体外

二、亲核物的解毒

一样通过在亲核功能基团上的结合反映来解毒如羟化的化合物通过硫酸化作用、葡萄糖醛酸化作用。

3、亲电子剂的解毒

一样亲电性毒物的解毒是通过与巯基亲核物谷胱苷肽共轭结合而解毒,此类反映可自发产生或由谷胱甘肽-硫转移酶协同进行,金属离子如Ag2+、Cd2+、Hg2+和CH3Hg离子很容易与谷胱甘肽反映而解毒。

4、自由基的解毒

没有任何一种酶能排除HO唯一有效的抗HO的方式是避免其产生,可通过两个反映即将O2-先转化成HOOH,再将HOOH转化成水。

酶性抗氧化系统

aSOD:

是一类含有不同辅基的金属结合酶家族,如CuZn-SOD、Fe-SOD与Mn-SOD。

它们在细胞内定位转变专门大,CuZnSOD存在多种脏器内如肝脏、红细胞,而Mn-SOD要紧在线粒体。

它的唯一生理功能是歧化超氧阴离子(O2-·),生成H2O2和O2。

b过氧化氢酶(CAT):

位于肝细胞和红细胞内过氧化小体中,其要紧功能是将H2O2转化为水。

cGSH-Px(GPO):

在机体内普遍存在,能特异地催化谷胱苷肽对过氧化物的还原反映,使过氧化物转化为水或相应的醇类。

可阻断脂质过氧化的链锁反映。

d谷胱苷肽还原酶(GR):

其散布同GSH-Px,要紧功能是产生还原型的谷胱苷肽(GSH),以爱惜机体解毒功能的执行。

e心肌黄酶(DTdiaphorase):

葡萄糖-6-磷酸脱氢酶。

非酶性抗氧化系统

在生物体系中普遍散布着许多小分子,它们能通过非酶促反映而清除氧自由基。

例如,维生素C、维生素E、GSH、尿酸、牛磺酸和次牛磺酸等。

谷胱苷肽(GSH)参与GSH—Px的作用,使过氧化物还原为H2O和氧化型谷胱苷肽(GSSG)。

有些有毒化学物可耗竭肝脏GSH而继发脂质过氧化,如丙烯腈、苯乙烯等。

维生素E它必需与膜结合才能发挥抗氧化作用。

第一与氧自由基反映,生成生育酚自由基,再由抗坏血酸—GSH氧化还原偶联反映而还原。

它属于“链断裂”抗氧化剂,要紧通过提供不稳固的氧给过氧自由基和烷基自由基,从而避免脂质过氧化。

五、蛋白质毒素的解毒

细胞外和细胞内的蛋白酶参与有毒多肽的失活。

胞内或胞外的蛋白酶可能在毒性多肽的解毒中起作用。

在蛇毒中发觉的几种毒素(如α,β-环蛇毒素,永良部海蛇毒素,磷酯酶)中含有分子内二硫键,这些二硫键是其维持活性必不可少的。

硫氧化还原蛋白可使上述几种蛋白失活。

硫氧化还原蛋白是一种可还原必需二硫键的内源性二巯基蛋白。

六、解毒进程失效

(1)解毒能力耗竭

毒物接触剂量超过机体,引发解毒酶耗竭、共底物消耗、胞内抗氧化剂耗竭,致使终毒物蓄积

(2)解毒酶失活

偶然可见某种具有反映活性的毒物使解毒酶失活

(3)某些结合反映可被逆转

(4)有时解毒进程产生潜在有害副产物

第二节终毒物与靶分子的反映

一、靶分子的属性(attributesoftargetolecules)

理论上所有内源性化合物都是毒物潜在的靶标。

从典型意义上讲,毒性是由终毒物与靶分子的反映所介导的一系列继发生化进程,致使在不同生物学组织结构水平(如靶分子本身、细胞器、细胞、组织和器官,乃至整个机体)上的功能失常损伤。

终毒物与靶分子的交互作用触发毒性效应需考虑以下几个方面:

①靶分子的属性;②终毒物与靶分子之间反映的类型;③毒物对靶分子的效应。

最后还必需考虑到,一些并非直接由终毒物与靶分子反映所启动,而是由于生物学微环境(关键的内源分子、细胞器、细胞和器官在如此的微环境中运行)改变所引发的毒性。

要紧有:

机体大分子:

如核酸专门是DNA和蛋白质;膜脂质;其他成份。

并非是所有的毒物与靶标的反映都是有害的。

确信毒作用靶分子的标准:

1.终毒物与靶标反映,并对其功能产生不良阻碍

2.终毒物在靶部位达到有效浓度

3.终毒物在某种机制上,以所观看的毒性相关的方式改变靶标

二、反映类型(typesofreactions)

(一)非共价结合

非共价结合(nonconvalentbinding)可能是通过非极性交互作用或氢键与离子键的形成,具有代表性的是毒物与膜受体、细胞内受体、离子通道和某些酶等靶分子的交互作用。

例如,番木鳖碱(strychnine)结合于脊髓运动神经元上甘氨酸受体,TCDD结合于芳受体,哈蚌酶素(Saxitoxin)结合钠通道,佛波脂结合于蛋白激酶C和杀鼠灵(warfarin)结合于维生素K2,3-环氧化物还原酶。

这种作使劲也促使吖啶黄(acridineyellow)和阿霉素(doxorubicin)插入双螺旋DNA。

由于这些化学原子的空间排列使它们与内源性分子的互补部位结合,或多或少有点像钥匙与锁的关系,因此这些化学物表现出毒性效应。

非共价结合一般是可逆的,因为这种结合的键能相对较低。

(二)共价结合

共价结合(convalentbinding)事实上是不可逆的,由于这种集合持久地改变内源分子,因此具有重要的毒理学意义。

共价加合物的形成常见于亲电物,如非离子和阳离子亲电物和自由基阳离子。

这些毒物与生物大分子如蛋白质和核酸中的亲核酸中的亲核原子反映,亲电原子对亲核原子表现出某些选择性,取决于它们的电荷/半径比。

一样而言,软亲电物较易与软亲核物(二者均具有较低的电荷/半径比)反映,而硬亲电子较易与硬亲核物(二者均具有较高的电荷/半径比)反映。

表4-4列出了一些实例。

如银和汞如此的金属离子被归类为软亲电物,它们优先与软亲核物反映;而锂、钙和钡如此的硬亲电物优先与硬亲核物反映;在这两个极端之间的金属如烙、锌和铅显示出与亲核物的普遍反映性。

亲电物的反映性决定了哪一种内源性亲核物能与之反映并成为起靶分子。

中性自由基如·OH、·NO2和Cl3C·也能共价结合于生物分子。

Cl3C·加入到脂质的双键碳或脂质自由基产生含有氯甲基脂肪酸的脂质。

羟基自由基加入到DNA碱基致使许多产物的形成,包括8-嘌呤、5-羟甲基嘧啶和胸腺嘧啶和胞嘧啶的乙二醇。

原那么上亲核物偏向于亲电内源化合物反映,但如此的反映不常发生,因为在生物分子中亲电物十分罕有。

其实例包括胺类和肼类与一种脱!

酶的共底物醛吡哆醛(pyridoxal)的共价反映;一氧化碳、氰化物、硫化氢和叠氮化物与各类血红素蛋白中的铁形成配位共价键。

其他亲核物以电子转移反映的方式与血红蛋白反映。

(三)去氢反映

自由基可迅速从内源化合物去除氢原子,将这些化合物转变成自由基。

从巯基化合物(R-SH)去除氢形成硫基自由基(R-S·),这种自由基是其他巯基氧化产物如次磺酸(R-SOH)和二硫化物(R-S-S-R)的前身。

自由基能从游离氨基酸或蛋白质氨基酸残基的CH2基除去氢,转变成!

基化合物与胺类反映,形成与DNA或其他蛋白质的交联。

从DNA分子中的脱氧核糖去除氢产生C-4`-自由基。

这是DNA断裂的最初步骤。

从脂肪酸去除氢产生脂质自由基并启动脂质过氧化。

蛋白质中酪胺酸残基的硝基化可能涉及去氢反映,随后发生形成的酪氨酰(tyrosyl)自由基与NO2之间的共价结合。

(四)电子转移

化学物能将血红蛋白中的Fe2+氧化为Fe3+形成高铁血红蛋白症。

亚硝酸盐能氧化血红蛋白,而N-羟基芳胺(如氨苯砜羟胺)、酚类化合物(如5-羟伯氨喹)和肼类(如苯肼)与氧合血红蛋白共氧化,形成高铁血红蛋白与过氧化氢。

(五)酶促反映

少数一些酶素通过酶促反映(enzymaticreaction)作用于特定靶蛋白上。

例如,蓖麻蛋白(ricin)诱发核糖体的水解断裂,阻断蛋白质的合成。

几种细菌毒素催化ADO-核糖从AND+转移到特定蛋白质。

例如白喉素阻断蛋白质合成进程中延伸因子(elongationfactor)的功能,霍乱毒素通过如此一种机制活化一种G蛋白,毒蛇喊有破坏生物分子的水解酶。

总之,大多数终毒物借助于它们化学反映性作用在内源分子上,具有一种类型以上反映性的那些毒物能够通过不同机制与不同的靶分子反映。

例如,醌类能够作为电子受体启动巯基氧化或致使脂质过氧化的自由基反映但它们也能够作为软亲电物共价结合于蛋白巯基。

铅离子当与血红素合成进程中的要紧靶酶δ-ALAD的关键巯基形成配位共价键时,是作为软亲电物;但是,当它结合于蛋白激酶C或阻碍断钙通道、在这些靶部位替代天然配体Ca2+时,它的表现又像一种硬亲电物或一种离子。

三、毒物对靶分子的阻碍

终毒物与内源性分子反映可引发功能与结构失常,对蛋白质而盐,这种反映可使蛋白质变成免疫系统的外源蛋白。

(一)靶分子的功能失调

某些毒物活化靶蛋白分子,模拟内源性配体,例如:

吗啡激活鸦片受体;氯苯丁脂(clofibrate)为一种过氧化物酶体增殖物激活性受提的兴奋剂;佛波酯和铅离子刺激蛋白激酶C。

但在更多情形下,化学物通常抑制靶分子的功能。

有些外源化学物如阿托品、箭毒(curare)和番木鳖碱(strychine)通过附着于配体结合部位或通过干扰离子通道的功能而阻断神经递质受体。

例如:

河豚毒素(tetrotodoxin)蛤蚌毒素(saxitoxin)抑制神经元膜上电压激活的钠通道开放;而DDT和除虫菊酯(pyrethroid)杀虫剂抑制它们的关闭;某些毒素阻断离子运转蛋白;另外一些毒物抑制线粒体电

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1