机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx

上传人:b****2 文档编号:23292607 上传时间:2023-05-16 格式:DOCX 页数:34 大小:362.25KB
下载 相关 举报
机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx_第1页
第1页 / 共34页
机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx_第2页
第2页 / 共34页
机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx_第3页
第3页 / 共34页
机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx_第4页
第4页 / 共34页
机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx

《机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx》由会员分享,可在线阅读,更多相关《机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx(34页珍藏版)》请在冰豆网上搜索。

机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告.docx

机械毕业设计英文外文翻译一种关于粗糙集改进注射模具浇道的报告

附录

附录1

AnImprovedRoughSetApproachtoDesignofGatingSchemeforInjectionMoulding

F.Shi,1Z.L.Lou,1J.G.Lu2andY.Q.Zhang11DepartmentofPlasticityEngineering,ShanghaiJiaotongUniversity,P.R.China;and2CenterofCAD,NanjingUniversityofChemicalTechnology,P.R.China

Thegateisoneofthemostimportantfunctionalstructuresinaninjectionmould,asithasadirectinfluenceonthequalityoftheinjectionproducts.Thedesignofagatingschemeincludestheselectionofthetypesofgateandcalculationofthesizesanddeterminationofthelocation,whichdependsheavilyonpriorexperienceandknowledgeandinvolvesatrial-and-errorprocess.Duetothevaguenessanduncertaintyinthedesignofagatingscheme,classicalroughsettheoryisnoteffective.Inthispaper,afuzzyroughsetmodelisproposed,whichisnotbasedonequivalentrelationshipsbutonfuzzysimilarityrelationships.Aninductivelearningalgorithmbasedonthefuzzyroughsetmodel(FRILA)isthenpresented.Comparedtodecisiontreealgorithms,theproposedalgorithmcangeneratefewerclassificationrules;moreover,thegeneratedrulesaremoreconcise.Finally,anintelligentprototypesystemforthedesignofagatingschemebasedonaninducedfuzzyknowledgebaseisdeveloped.Anillustrativeexampleprovestheeffectivenessoftheproposedmethod.

Keywords:

Fuzzyroughset;Gatingscheme;Injectionmold;

Intelligentdesign;Knowledgeacquisition

1.Introduction

Themanufacturingindustryforplasticproductshasbeengrowingrapidlyinrecentyears,andplasticsareusedwidelytosubstituteformetals.Theinjectionmouldingprocessisthemostpopularmouldingprocessformakingthermoplasticparts.Thefeedingsystem,whichisoneoftheimportantfunctionalstructures,comprisesasprue,aprimaryrunner,asecondaryrunnerandagate.Themoltenplasticflowsfromthemachinenozzlethroughthesprueandrunnersystemandintothecavitiesthroughthegate.Actingastheconnectionbetweentherunnerandthecavity,thegatecaninfluencedirectlythemouldventing,theoccurrenceofjetting,thelocationofweldlines,andwarpage,shrinkageandresidualstresses.Hence,thegatedesignisimportantforassuringthequalityofthemould.

Thedesignofagateincludestheselectionofthetypeofgate,calculationofthesizeanddeterminationofthelocation.Andthedesignofagateisbasedontheexperienceandknowledgeofthedesigners.Thedeterminationsofthelocationandsizesaremadebasedonatrial-and-errorprocess.Inrecentyears,afeature-modellingenvironmentandintelligenttechnologyhavebeenintroducedforgatedesign.LeeandKiminvestigatedgatelocationsusingtheevaluationcriteriaofwarpage,weldlinesandizodimpactstrength.Alocalsearchwasusedtodeterminethenodesofthelocationofthegate[1].SaxenaandIraniproposedaframeforanon-manifoldtopology-basedenvironment.Aprototypesystemforgatelocationdesignwasdeveloped.Thecriteriaforevaluationwerebasedongeometry-relatedparameters[2].Linselectedtheinjectionlocationandsizeofthegateasthemajorcontrolparameters,andchosetheproductperformance(deformation)astheoptimisingparameter.Combiningthetechnologiesofabductivenetworksandsimulationannealingoptimisationalgorithms,theoptimalmodelforthelocationandsizeofthegatewasconstructed[3,4].Zhouetal.establishedarulesetfordeterminingthelocationofthegatebasedonanalysisoftheplasticparts.Thelocationofthegatewasdeterminedthroughreasoningwithrules[5].Pandelidisetal.developedasystemwhichcanoptimisegatelocationbasedontheinitialgatingplans.ThesystemusedMOLDFLOWsoftwareforflowanalysis,andcontrolledthetemperaturedifferentialandthenumberofelementsoverpackedwithanoptimisationstrategy[6].

DengusedID3anditsmodifiedalgorithmstogeneratetherulesetfortheselectionofthegatetypes[7].However,therearemanyfuzzyorvagueattributesintheselectionofthetypes,suchastheattributeoflossofpressurethathastwofuzzylinguisticvariablesi.e.canbehighandmustbelow.TheID3algorithmscannotdealwithfuzzyor“noise”informationefficiently.Itisalsodifficulttocontrolthesizeofthedecisiontreeextractedbythealgorithmsandsometimesverylargetreesaregenerated,makingcomprehensibilitydifficult[7,8].

Roughsettheoryprovidesanewmathematicalapproachtovagueanduncertaindataanalysis[9,10].Thispaperintroducesthetheoryofroughsetsforthedesignofagatingscheme.Theselectionofthetypeofgateisbasedonthetheoryofroughsets.Consideringthelimitationsofroughsets,thispaperproposesanimprovedapproachbasedonroughsettheoryforthedesignofthegatingscheme.Theimprovedroughsetapproachtotheschemedesignwillbegivenfirst.Afuzzyrough-set-basedinductivelearningalgorithm(FRILA),whichisappliedintheimprovedapproach,willthenbepresented.Anexampleofthedesignofagatewillfinallybegiven.

Table1.Classificationcriteria.

Conditionattributes

Fuzzylinguisticvariables

Styleofplasticparts(p)

(Deep,Middle,Shallow)Shell,(Deep,Middle,Shallow)Tube,(Deep,Middle,Shallow)

Ring

Numberofcavities(n)

Single-cavity,Multi-cavity

Lossofpressure(l)

Canbehigh,Mustbelow

Conditionofseparatinggatefromparts(q)

Mustbeeasy,Notrequestspecially

Machiningperformance(m)

Mustbeeasy,Notrequestspecially

2.ARoughSetApproachtoGatingSchemeDesign

2.1DesignoftheGatingScheme

Themodelofthegatingschemedesigncanbedescribedasfollows.Adecisiontablewith4-tuplescanberepresentedasT=(U,C,D,T).whereUistheuniverse.C={C1,C2,…,Ck}isthesetofconditionattributes,eachofwhichmeasuressomeimportantfeatureofanobjectintheuniverseU.T(Ck)={Tk1,T2k,...,TkSk}isthesetofdiscretelinguisticterms.Inotherwords,T(Ck)isthevaluesetoftheconditionattributes.D={D1,D2,…,Dl}isthesetofdecisionattributes,thatis,eachobjectintheuniverseisclassifiedbythesetD.

Generally,theconditionattributescanbeclassifiedasfivesets,includingstyleofplasticparts,numberofcavities,lossofpressure,conditionofseparatinggatefrompartsandmachineperformance.ThedetailsofthefiveconditionattributesandcorrespondingvariablesofthefuzzylinguisticareshowninTable1.

Fromthetable,itcanbeseenthatmostoftheattributesarevaguesincetheyrepresentahumanperceptionanddesire.Forinstance,shell,tubeandringareselectedfortheclassificationofplasticpartsandtheirfuzzylinguisticvaluesare“deep”,“middle”and“shallow”,respectively.Fortheattributelossofpressure,“canbehigh”and“mustbelow”areselectedtoapproximatethefuzzyattribute.

Afuzzyruleforgatingschemedesigncanbewritteninthefollowingform:

IF(C1isT1i1)AND…(CkisTik)THEN(DisDj)

(1)whereTkikisthelinguistictermofconditionattributeCk,andDjisaclasstermofthedecisionattributeD.

FuzzyruleswiththeformofEq.

(1)areusedtoperformmin-maxfuzzyinference.LetckbethemembershipvalueofanobjectinTkanddbetheforecastvalueofDj,whered=ikmin(ck)andministheminimumoperator.Iftwoormoreruleshavethesameconclusion,theconclusionwiththelargestvalueofd,whichisalsonamedthecertaintyfactorischosen.

Fortheproblemofthegatingschemedesign,afuzzydesignrulecanbedescribedasfollows.

IF(Typeofplasticpart=middleshell)

AND(Numberofcavities=single)

AND(Conditionofseparatinggatefrompart=notrequestespecially)

(2)

THEN(Gatingscheme=straightgate)

CF=0.825

Fromtheaboverule,thegatingschemeofthestraightgatewillbeselectedisswithacertaintyfactorof0.825,ifthetypeofpartismiddleshellandthenumberofcavitiesissingleandtheconditionofseparatinggatefrompartisnotrequired.Theaboveisjustlikehumanlanguageandiseasytounderstand.

2.2BasicConceptsofRoughSets

Inrecentyears,theroughset(RS)theory,proposedbyPawlak,hasbeenattractingtheattentionoftheresearchers.ThebasicideaofRSistoclassifytheobjectsofinterestintosimilarityclasses(equivalentclasses)containingindiscernibleobjectsviatheanalysisofattributedependencyandattributereduction.Theruleinductionfromtheoriginaldatamodelisdata-drivenwithoutanyadditionalassumptions.Roughsetshavebeenappliedinmedicaldiagnosis,patternrecognition,machinelearning,andexpertsystems[10,11].

Adecisiontablewitha4-tuplecanberepresentedasT=,whereUistheuniverse,

CandDarethesetsofconditionanddecisionattributes,respectively,VisthevaluesetoftheattributeainA,andfisaninformationfunction.

Assumingasubsetofthesetofattributes,twoobjectsxandyinUareindiscerniblewithrespecttoPifandonlyif

.TheindiscernibilityrelationiswrittenasIND(P).U/IND(P)isusedtodenotethepartitionofUgiventheindiscernibilityrelationIND(P).

Aroughsetapproximatestraditionalsetsbyapairofsets,whicharethelowerandtheupperapproximationsofthesets.ThelowerandupperapproximationsofasetY.UgivenanequivalencerelationIND(P)aredefinedasfollows:

 

Thedefinitionofthelowerapproximationofasetinvolvesaninclusionrelationwherebytheobjectsinanequivalenceclassoftheattributesareentirelycontainedintheequivalenceclassforthedecisioncategory.Thisisthecaseofaperfectorunambiguousclassification.Fortheupperapproximation,theobjectsarepossiblyclassifiedusingtheinformationinattributesetP.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1