全热交换器新风系统原理和特点.docx
《全热交换器新风系统原理和特点.docx》由会员分享,可在线阅读,更多相关《全热交换器新风系统原理和特点.docx(6页珍藏版)》请在冰豆网上搜索。
全热交换器新风系统原理和特点
全热交换器新风系统原理和特点
全热交换器新风系统原理和特点
全热交换器新风系统是新风系统的一种,新风系统分为单向流新风、双向流新风和全热交换器新风系统,它兼有新风系统众多优点,是最舒适、最节能的新风系统。
全热交换器新风系统原理:
热交换新风系统将整体平衡式通风设计与高效换热完美地结合在一起,系统配置了双离心式风机和整体式平衡风阀,系统从室外引入新鲜空气,经送风管道系统分配至各卧室、客厅,同时将从走廊、客厅等公共区域收集的室内混浊气流排出,在不开窗的情况下完成室内空气置换,提高室内空气品质。
新风气流和从室内排出的混浊气流在新风系统内的热交换核心处进行能量交换,降低了从室外引入新鲜空气对室内舒适度、空调负荷的影响。
另外,系统还可以根据人体舒适性需求配置智能化控制系统。
全热交换器新风系统特点:
1、空气过滤清晰:
内置专业级空气过滤器,保证送入房间内的空气洁净清新。
2、超静音设计:
主机风机采用超低噪音风机,设备内部采取高效消音技术,工作噪音极低、无干扰。
3、超薄型易安装:
机体特作超薄机型设计,给安装带来极大便利,可节省有限的建筑空间。
4、免维护设计:
独特设计的气流通道,气流透过性好、风阻小,可长期连续使用,实现热交换主体免维护。
5、节能环保:
由热交换进行换气,即便使用冷暖气也不会造成能量损耗,提供全方位的高效、节能的换气环境。
6、精工细作:
设备部件均采用优质钢板、环保材料、铝合金框架,表面静电喷塑技术处理,质量上乘,美观精致;
全热交换器新风系统适用范围:
全热交换器新风系统风量范围:
150-1000m3/h,适合于住宅、写字楼、宾馆、医院、实验室、机房、棋牌室、餐饮、办公、娱乐几乎所有场所,可以根据不同户型面积、人口数量、周边环境设计不同方案,适合各种建筑和人群。
随着经济的高速发展,汽车尾气、工业废气、装修污染、气候恶化、城市热岛、建筑封闭等一系列问题影响着我们生活工作。
空气是每个人每时每刻都要呼吸的必需品,如果离开清新、自然的空气我们的生活将面临很多健康安全问题,只有保证室内良好的空气质量,才能营造更为舒适健康的居住环境,全热交换器新风系统运用高新技术,可以轻松帮你实现室内空气流通,让您畅享自然健康生活。
新风全热交换器
求助编辑百科名片
新风全热交换器通过管道将室外的空气温度调节接近室内空气温度后送入室内,可连续不断的提供高性能和高效率的换气。
新风全热交换器在室内带动空气循环,形成恒定湿度空间;通过设备过滤掉室外空气粉尘及其他污染物,补充室内新鲜空气,可在开空调时开窗换气。
1目前市场上的能量回收设备有两类:
2固定式全热交换器的性能
2.1固定式全热交换器
2.2三种效率的定义
2.3效率的影响因素
关于效率的影响因素,得出下列结论:
1目前市场上的能量回收设备有两类:
2固定式全热交换器的性能
2.1固定式全热交换器
2.2三种效率的定义
2.3效率的影响因素
关于效率的影响因素,得出下列结论:
展开
新风全热交换器全热交换效率=[(室外空气焓量-送风空气焓量)/(室外空气焓量-室内空气焓量)]*100%
2003年出现的SARS疫情,使我们人类的健康面临严峻的挑战,2009年又爆发了猪流感,于是关于人居环境的空气品质问题多有讨论,提出健康空调是今后空调的发展方向。
但究竟什么是健康的空调,怎样去实现健康舒适的空调,关于这个问题,舒适100也进行了一些分析,指出全空气系统是最佳的空调系统,它可以实现对建筑热湿控制及空气品质的全面控制,同时也为充分利用自然资源,进行全新风运行提供条件。
加大新风量是实现良好空气品质的最好方法,只从空气品质的角度来说,进行全新风运行的空调系统才是最好的系统,可是由此带来的能量消耗确实是非常大的。
根据武汉的气象资料计算,当室内设计值在26℃,60%时,对于公共建筑,处理1m3/h新风量,整个夏季需要投入的冷能能耗累计约9.5kw·h左右。
可见加大新风量后,能量消耗就有很大增加。
因此,需要在新风与排风之间加设能量回收设备。
编辑本段1目前市场上的能量回收设备有两类:
一类是显热回收型,一类是全热回收型。
显热回收型回收的能量体现在新风和排风的温差上所含的那部分能量;而全热回收型体现在新风和排风的焓差上所含的能量。
单从这个角度来说,全热性回收的能量要大于显热回收型的能量,这里没有考虑回收效率的因素。
因此全热回收型是更加节能的设备。
按结构分,热回收器分为以下几种:
(1)回转型热交换器
(2)热回收环热交换器
(3)热管式热交换器
(4)静止型板翅式热交换器
在以上几种热交换器中,热回收环型和热管型一般只能回收显热。
回转型是一种蓄热蓄湿型的全热交换器,但是它有转动机构,需要额外的提供动力。
而静止型板翅式全热交换器属于一种空气与空气直接交换式全热回收器,它不需要通过中间媒质进行换热,也没有转动系统,因此,静止型板翅式全热交换器(也叫固定式全热交换器)是一种比较理想的能量回收设备。
编辑本段2固定式全热交换器的性能
2.1固定式全热交换器 固定式全热交换器是在其隔板两侧的两股气流存在温差和水蒸气分压力差时,进行全热回收的。
它是一种透过型的空气——空气全热交换器。
这种交换器大多采用板翅式结构,两股气流呈交叉型流过热交换器,其间的隔板是由经过处理的、具有较好传热透湿特性的材料构成。
2.2三种效率的定义 全热交换器的性能主要通过显热、湿交换效率和全热交换效率来评价,它们的计算公式为:
显热交换效率:
SE=
湿交换效率:
ME=
全热交换效率:
EE=
其中:
Gmin——质量流量小的一侧的空气流量
i1、i2——分别为两侧空气入口的焓值
t1、t2——分别为两侧空气入口的温度
——分别为两侧空气入口的焓值
cp——质量流量小的一侧的空气的比热
对效率定义的表达式很多,但最本质的定义还是上述对效率的表达式。
这三种效率最本质的定义都是:
实际交换的量(热量或者湿量)与可能达到的理想的最大的交换量的比值。
2.3效率的影响因素 对全热交换器的效率有以下影响因素:
(1)所用材质的热物性参数
(2)隔板两侧空气的进风参数(包括:
风量、速度、温度、相对湿度等)
在上述的第二个因素中,新风的热力参数,也就是室外的气象条件,对全热交换器的效率也是影响很大的。
材质的热物性参数以及室外气象条件对三种效率的影响,这两种因素对潜热效率的影响要比对显热效率的影响明显。
从能耗的角度分析了全热交换器在武汉的使用情况,指出气候条件越潮湿,全热交换器比显热交换器更有优势,并得出武汉的潜热回收效率在一年中的大部分时间保持在60%的结论。
编辑本段关于效率的影响因素,得出下列结论:
(1)静止型板翅式全热交换器的显热效率和潜热效率取决于材质的热物性参数、平隔板两侧的界面风速和风量比,而与进风参数无关。
(2)用纤维性多孔质基材制成单元体的全热交换器在传递能量和湿量时,温度效率与基材的工艺处理无大关系,而潜热交换效率主要由材质的透湿特性决定。
(3)在显热效率不等于潜热效率时,全热效率与进风的温湿度条件有关。
3固定式全热交换器的关键问题固定式全热交换器性能的高低,除了与使用地区的气候条件有关外,主要取决于所用材质的热物性能的好坏。
目前的文献或已有的产品中所提到的材质有两种:
一种是特殊的纸,另外一种是膜。
但是不管用哪种材质,从传热传质机理来讲,可以分为两种:
一种是多孔渗水材料,它的传质机理是对流扩散,传递动力是压力差;另一种是非渗水材料,传质机理是纯分子扩散,传递动力是浓度差。
对于材质的性能,大部分研究者关注的都是它的传热传湿性能。
但是,材质的传递气体(特别是各种污染气体)的性能应该是更加值得关注的。
尤其是当全热交换器用于一些特殊场合(比如医院)的空调系统时,空调系统的排风中带有污染的气体,在回收排风中的热量的同时,不能使污染气体也扩散到新风中去。
即便是在普通的大型中央空调系统中,当有大规模的空气传播流行病爆发时,空调系统需要切换到全新风运行模式,此时的排风中携带有各种病毒,因此也不能使这些病毒通过全热交换器的材质传递到新风中去。
所以,从空调系统的健康性和安全性考虑,材质的传递污染气体的性能是更应值得关注的。
4理论模型的建立用多孔介质传热传质的理论建立模型,分析材质的传热传湿性能。
目前的大部分研究所建立的模型都建立下列的数学模型:
通过材质的传热传质过程简化为三个步骤:
(1)材质一侧的吸附过程
(2)通过材质的扩散过程
(3)材质另一侧的解析过程
根据多孔介质传质理论可知,多孔介质中的质量传递属于分子扩散形式。
但是随着空隙尺寸大小的不同,这种分子扩散质量传递的特点与规律有所不同,所遵守的质量传递定律的表达式亦有所差别。
简要分析为:
(1)当空隙的定性尺寸远大于分子自由程时,遵守Fick定律,称为Fick扩散。
(2)当空隙的定性尺寸远小于分子自由程时,发生的是Knudsen扩散。
此时,流体分子同璧面的碰撞品率比它们之间碰撞的频率高很多,当流体分子撞击璧面时,避免就会对其产生瞬时吸附,这种吸附使得流体通量减少了。
Knudsen扩散不再遵守Fick定律。
(3)当空隙的定性尺寸与分子自由程相当时,多孔介质中流体的质量扩散,既不遵守Fick定律,也不符合Knudsen扩散分析的结果,也称为过渡扩散。
所以,材质内的质扩散过程不能只用Fick定律来表示,需要根据材质的内部空隙结构,建立不同的质扩散模型。
5目前相关实验测试标准:
(1)ANSI/ASHRAE84-1991
(2)BSEN305:
1997
(3)ISO9360-2
(4)CENPREN308
(5)ASTMTESTMETHODE96-93
(6)KSB6879-2007
(7)JISB8628-2003/JISP8117-1998/JISZ0208-1976/JISZ2150-1966
(8)国标GB/T21087-2007
这些标准详细规定了全热交换器的测试实验方法,所用的测试仪器以及测试中应注意的问题。
ASTMTESTMETHODE96-93是测试材料的水蒸气传递特性的标准。
全热交换器是一种很好的节能设备,有广泛的应用前景,在国内也掀起了研究的热潮,生产各种热回收器的厂家也纷纷出现,为了规范市场和引导正确的研究方向,我国也应该尽快建立相关的测试标准。
[1]