等腰三角形讲练.docx

上传人:b****2 文档编号:23088425 上传时间:2023-04-30 格式:DOCX 页数:35 大小:207.36KB
下载 相关 举报
等腰三角形讲练.docx_第1页
第1页 / 共35页
等腰三角形讲练.docx_第2页
第2页 / 共35页
等腰三角形讲练.docx_第3页
第3页 / 共35页
等腰三角形讲练.docx_第4页
第4页 / 共35页
等腰三角形讲练.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

等腰三角形讲练.docx

《等腰三角形讲练.docx》由会员分享,可在线阅读,更多相关《等腰三角形讲练.docx(35页珍藏版)》请在冰豆网上搜索。

等腰三角形讲练.docx

等腰三角形讲练

等腰三角形讲练

新课指南

1.知识与技能:

(1)经历获得知识的过程,并通过观察、分析、想象、探索,掌握等腰三角形的性质及判定;

(2)了解等边三角形的性质和判定等知识的形成过程,培养丰富的想像力,增强审美意识.

2.过程与方法:

经历探索等腰(边)三角形的性质及判定,探索应用等腰三角形知识解决实际问题,尤其是用轴对称的性质来解释等腰(或等边)三角形的相关性质,进一步体会从一般到特殊,再从特殊到一般的研究事物的辩证方法.

3.情感态度与价值观:

培养学生合作交流、体验成功、体验审美、增强自信心,同时,充分体会分类讨论数学思想在解决问题中的广泛应用.

4.重点与难点;重点是等腰三角形的性质和判定.难点是由轴对称知识来理解和掌握等腰三角形的性质和判定.

教材解读精华要义

数学与生活

如图14-61所示,位于在海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B,如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?

思考讨论如果两艘船以同样的速度同时出发,并且同时赶到出事地点,说明两艘船的航程相同,即OA=OB,而已知∠A=∠B,能直接由此判断出OA=OB吗?

知识详解

知识点1等腰三角形的概念

有两条边相等的三角形,叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

如图14-62所示,在△ABC中,若AB=AC,则△ABC是等腰三角形,其中AB,AC叫做腰,BC叫做底边,∠A叫做顶角,∠B和∠C叫做底角.

知识点2等腰三角形的性质

性质1:

等腰三角形的两个底角相等(简写成“等边对等角”).

性质2:

等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.

【说明】等腰三角形的两个性质都可以由证明两个三角形全等而证实.

例如:

如图14-63所示,在△ABC中,AB=AC.求证∠B=∠C.

证明:

过点A作BC边上的中线AD.

∴BD=DC.

在△ABD和△ACD中,

∴△ABD≌△ACD(SSS).

∴∠B=∠C(全等三角形的对应角相等).

探究交流

上例中并没有直接全等的三角形,而是通过作辅助线“BC边上的中线AD”来构造出两个全等的三角形,再用全等三角形的性质证明出“∠B=∠C”.想一想,本题还有没有作其他辅助线的方法?

在本题中能否进一步证明AD是∠BAC的平分线和BD边上的高?

试试看.

点拨由等腰三角形的性质2可知,等腰三角形是轴对称图形,它的对称轴是底边上的中线(顶角平分线、底边上的高)所在直线.

知识点3等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

例如:

图14-64所示,在△ABC中,∠B=∠C.求证AB=AC.

证明:

作AD⊥BC,垂足为D.

∴∠ADB=∠ADC=90°.

在Rt△ADB和Rt△ADC中,

∴Rt△ADB≌Rt△ADC(AAS).

∴AB=AC(全等三角形的对应边相等).

知识点4等边三角形的概念

三条边都相等的三角形,叫做等边三角形.

知识点5等边三角形的性质和判定

Ⅰ.等边三角形的性质和判定.

(1)等边三角形的三个内角都相等,并且每一个内角都等于60°

(2)三个角都相等的三角形是等边三角形

(3)有一个角是60°的等腰三角形是等边三角形

Ⅱ.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半.

典例剖析师生互动

基础知识应用题

本节知识的基础应用主要包括:

(1)等腰三角形的性质和判定;

(2)等边三角形的性质;(3)三角形的内角和;(4)三角形三边关系.

例1已知三角形的一个内角是110°,求另外两个角的度数.

分析因为等腰三角形的内角和是180°,

若110°是底角,则110°×2=220°>180°,

所以110°只能是顶角.故底角是

=35°.

解:

由题意可知,110°是顶角,设底角为α,则

2α+110°=180°,∴α=35°.

∴这个三角形另外两个角是35°,35°.

例2等腰三角形的一个内角是80°,求它的另外两个角.

分析用分类讨论的思想方法来思考本题.若顶角是80°,则设底角为α,由三角形内角和得2α+80°=180°,∴α=50°.若底角是80°则设项角为β,由三角形内角和得2×80°+β=180°,∴β=20°.

解:

①若顶角是80°,设底角为α,则有

2α+80°=180°,

∴α=50°.

②若底角是80°,设顶角为β,则有

80°×2+β=180°,

∴β=20。

∴这个等腰三角形的另外两个角是50°,50°或80°,20°.

学生做一做

(1)若等腰三角形的一个内角为40°,则它的顶角为;

(2)若等腰三角形的两个内角和为100°,则它的顶角为.

老师评一评

(1)只告诉一个内角为40°,并没有说明是哪一个内角,所以应分两种情况来讨论:

若顶角为40°,则40°+2α=180°,α=70°。

符合要求,直接填上即可;若底角为40°,则顶角为180°-2×40°=100°,符合要求.∴应填40°或100°.

(2)已知两个内角的和为100°,三角形的内角和为180°,所以可知等腰三角形一个内角为180°-100°=80°,同样用分类讨论方法来考虑:

若80°是顶角,可直接填上即可;若80°是底角,则顶角是100°-80°=20°.∴应填80°或20°.

例3等腰三角形的底角与顶角的度数之比为2∶1,则顶角为()

A.72°B.36°C.36°或72°D.18°

分析设顶角为α,则底角为2α,由三角形的内角和可知,α+2×2α=180°,5α=180°,∴α=36°,∴这个三角形的顶角为36°,故正确答案为B项.

例4若等腰三角形的底边长是8cm,腰长是5cm,则这个等腰三角形的周长是()

A.21cmB.18cmC.18cm或21cmD.13cm或26cm

分析由题意可知,8+5+5=18(cm),故正确答案为B项.

学生做一做等腰三角形一边长为8,另一边长为4,则它的周长为.

老师评一评题中给出等腰三角形的两边长分别是8和4,但并没有给出哪一个是腰,哪一个是底,要分两种情况:

①若腰是8,底是4,则另一腰是8,有4+8>8,满足三角形三边关系,∴8×2+4=20;

②若腰是4,底是8,则另一腰是4,有4+4=8,不满足三角形三边关系,∴这种情况不存在.

∴这个三角形的周长为20.

小结已知等腰三角形两边,求第三边或周长时,要全面考虑第三边的情况,求出第三边要满足三角形的三边关系,所以上题可以这样考虑:

设这个等腰三角形的第三边为x,由三角形三边关系可知,

8-4<x<8+4,

即4<x<12,

又因为这个三角形是等腰三角形,所以第三边只能考虑4或8,

由4<x<12,∴x=8,

∴这个三角形的第三边为8,其周长为8×2+4=20.

例5如果等腰三角形的三边长均为整数,且它的周长为10cm,那么它的三边长分别为.

.

(分析)设这个三角形的腰长为xcm,则底边长为10-2x=2(5-x)cm.

共有4种情况:

①当x=1cm时,10-2x=8(cm);

②当x=2cm时,10-2x=6(cm);

③当x=3cm时,10-2x=4(cm);

④当x=4cm时,10-2x=2(cm).

又由三角形三边关系可知,①②不满足三角形三边关系.

∴这个三角形的三边有两种;

3cm,3cm,4cm或4cm,4cm,2cm.

答案:

3cm,3cm,4cm或4cm,4cm,2cm

综合应用题

本节知识的综合应用主要包括:

(1)等腰(边)三角形的性质和判定的综合应用;

(2)与方程、不等式知识的综合应用;(3)与三角形全等的综合应用.

例6如图14-65所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.

分析本题由已知条件知,图中的三个三角形都是等腰三角形,相等的角或有关系的角较多,为了明确它们之间的关系,这类题往往要设其中一个角为α,然后利用α将其余的角表示出来.

解:

∵AB=AC=CD,AD=DB

∴∠1=∠2,∠B=∠3,∠B=∠C.

设∠B=α,则∠B=∠3=∠C=α,∠1=∠2=∠3+∠B=2α.

在△ABC中,∠B+∠C+∠1+∠3=180°,

即α+α+2α+α=180°,

5α=180°,α=36°.

∴∠BAC=∠3+∠1=α+2α=3α=3×36°=108°.

∴∠BAC的度数为108°.

学生做一做

(1)如图14-66所示,已知AB=AC,BC=CD=AD,求∠B的度数;

(1)如图14-67所示,已知BD=CD=AC,∠B=18°,求∠ACB的度数.

老师评一评

(1)

(2)题中都有几个等腰三角形,有许多相等的角,可设其中某一个角,再把其余的角表示出来.

(1)∵AB=AC,BC=CD=AD,

∴∠B=∠ACB,∠2=∠B,∠1=∠A.

设∠1=∠A=α,则∠2=∠B=2a,∠3=∠B-∠1=a.

在△BCD中,∠B+∠2+∠3=180°,

∴2α+2α+α=180°,

∴5α=180°,∴α=36°,

∴∠B=2α=2×36°=72°.

(2)∵BD=CD=AC,

∴∠1=∠B,∠2=∠A.

又∵∠2=∠1+∠B=2∠B,∠B=18°,

∴∠2=2×18°=36°.∴∠A=36°.

∴∠ACB=180°-∠A-∠B=180°-36°-18°=126°.

例7如图14-68所示,在△ABC中,AB=AC,AD⊥BC于点D,E是AD延长线上一点,连接BE,CE.求证BE=CE.

分析本题主要考查等腰三角形的性质和三角形全等的判定.

证明:

∵AB=AC,∴∠ABC=∠ACB.

又∵AD⊥BC,

∴∠ADB=∠ADC=90°.

在Rt△ABD和Rt△ACD中,

∴Rt△ABD≌Rt△ACD(HL).

∴∠BAD=∠CAD(全等三角形的对应角相等).

在△ABE和△ACE中,

∴△ABE≌△ACE(SAS).

∴BE=CE(全等三角形的对应边相等).

例8如图14-69所示,在△ABC中,AB=AC,AE是∠BAC外角∠DAC的平分线.试判断AF与BC的位置关系.

分析主要考查等腰三角形性质的应用.

解:

AE与BC的位置关系是AE∥BC.理由如下:

∵AB=AC,∴∠B=∠C.

又∵∠DAC=∠B+∠C=2∠C,AE是∠DAC的平分线;

∴2∠EAC=∠DAC,

∴∠C=∠EAC,

∴AE∥BC(内错角相等,两直线平行).

学生做一做

(1)如图14-69所示,在△ABC中,AB=AC,AE∥BC.求证AE是△BAC的外角∠DAC的平分线;

(2)如图14-69所示,在△ABC中,AE是∠BAC的外角∠DAC的平分线,且AE∥BC.试判断△ABC的形状.

老师评一评本题意在考查如果把已知问题中的条件与结论互换,看得到的新命题是否成立,有利于培养学生灵活分析问题和解决问题的能力.

(1)∵AB=AC,∴∠B=∠C.

又∵AE∥BC,∴∠EAC=∠C(两直线平行,内错角相等),

∠DAE=∠B(两直线平行,同位角相等).

∴∠EAC=∠DAE.

∴AE是∠DAC的平分线.

(2)△ABC是等腰三角形.理由如下:

∵AE是∠DAC的平分线,

∴∠DAE=∠EAC.

又∵AE∥BC,

∴∠DAE=∠B,∠EAC=∠C,

∴∠B=∠C,

∴AB=AC(等角对等边).

∴△ABC是等腰三角形.

例9如图14-70所示,△ABD和△ACE是等边三角形.求证BE=CD.

(分析)欲证BE=CD,只需证明△ADC≌△ABE即可.

证明:

∵△ABD和△ACE是等边三角形,

∴∠DAB=∠EAC=60°,

AD=AB,AC=AE

∴∠DAB+∠BAC=∠EAC+∠BAC,

即∠DAC=∠BAE.

在△DAC和△BAE中,

∴△DAC≌△BAE(SAS).

∴DC=BE(全等三角形的对应边相等).

学生做一做如图14-71所示,B,C,D三点在一条直线上,△ABC和△ECD是等边三角形.求证BE=AD.

老师评一评欲证BE=AD,只需证明△BCE≌△ACD即可.

∵△ABC和△ECD是等边三角形,

∴∠ACB=∠ECD=60°,BC=AC,EC=CD.

∴∠ACB+∠ACE=∠ECD+∠ACE,

即∠BCE=∠ACD.

在△BCE和△ACD中,

∴△BCE≌△ACD(SAS).

∴BE=AD(全等三角形的对应边相等).

小结在完成类似的几何问题时,要注意灵活,举一反三,这样就可以避免题海战术,能够以点代面,同一类问题研究透彻,类似问题便能迎刃而解.

例10等腰三角形ABC的周长为10cm,底边BC长为ycm,腰AB长为xcm.

(1)写出y关于x的函数关系式;

(2)求x的取值范围;

(3)求y的取值范围.

分析本题主要考查代数与几何知识的综合应用,解题时注意相关的几何知识.

解:

(1)y=10-2x.

(2)∵x,y为线段,∴x>0,y>0.

∴10-2x>0,∴O<x<5.①

又∵x,y为三角形边长,

∴x+x>y,即2x>10-2x.②

由①②可得2.5<x<5.

∴x的取值范围是2.5<x<5.

(3)∵2.5<x<5,∴5<2x<10,∴-10<-2x<-5,∴O<10-2x<5,

∴O<y<5.

∴y的取值范围是O<y<5.

例11如图14-72所示,在△ABC中.AB=AC,BD⊥AC,垂足为D,求∠DBC与∠A的关系.

图14-72

解:

∵AB=AC,∴∠ABC=∠C.

又∵∠A+∠ABC+∠C=180°,

∴∠C=

(180°-∠A)=90°-

∠A.

又∵BD⊥AC.∴∠BDC=90°.

∴∠DBC=90°-∠C=90°-(90°-

∠A)=

∠A,

∴∠DBC=

∠A.

即等腰三角形腰上的高与底边的夹角等于该等腰三角形顶角的一半.

学生做一做

(1)在△ABC中,AB=AC,BD⊥AC,垂足为D,若∠DBC=25°,则∠A=;

(2)在△ABC中,AB=AC,若∠B=70°,BD⊥AC,垂足为D,则∠DBC=.

老师评一评由例11的结论得出;

(1)题中,∠DBC=25°=

∠A,∴∠A=50°.

(2)题中,∵AB=AC,∴∠B=∠C=70°.∴∠A=40°.∴∠DBC=20°.

例12如图14-73所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线交AB于D,交BC于E,若CE=3cm,求BE的长.

分析主要应用线段垂直平分线的性质和30°角的直角三角形的性质.

解:

连接AE,

∵∠C=90°,∠BAC=60°,

∴∠B=30°.

又∵DE是AB的垂直平分线,

∴EA=EB.∴∠EAB=∠B=30°.

∴∠CAE=30°.

∴AE是∠CAB的平分线.

又∵∠C=90°,ED⊥AB,

∴DE=EC=3cm.

在Rt△DBE中,∠B=30°,∠EDB=90°,

∴DE=

BE,∴BE=2×3=6(cm).

学生做一做如图14-74所示,在Rt△ABC中,∠C=90°,∠B=15°,AB的垂直平分线分别与BC,AB交于M,N.求证MB=2AC.

老师评一评连接MA,

∴∠C=90°,∠B=15°,

∴∠CAB=75°.

又∵MN是AB的垂直平分线,

∴MA=MB.

∴∠MAB=∠B=15°.

∴∠CAM=∠CAB-∠MAB=75°-15°=60°.

∴∠CMA=30°.

在Rt△CMA中,∠C=90°,∠CMA=30°,

∴CA=

MA.∴CA=

MB.

即MB=2AC.

小结在直角三角形中证明线段的一半或2倍关系时,经常考虑30°角所对的直角边.

探索与创新题

主要考查:

(1)利用等腰三角形知识探索和创新的能力;

(2)图形分割;(3)辅助线的灵活应用;(4)探讨结论性问题等。

例13如图14-75所示,已知点O是∠ABC,∠ACB的平分线的交点,且OD∥AB,OE∥AC.

(1)图形中共有哪几个等腰三角形?

选一者证明之;

(2)试说明△ODE的周长与BC的关系;

(3)若BC=12cm,则△ODE的周长.

分析本题

(1)问主要是等腰三角形的判定;

(2)问是探讨两者间的数量关系,由

(1)可得;(3)问由

(2)问的结果得出.

解:

(1)图形中共有两个等腰三角形,它们分别是△OBD和△OCE.

以△OBD为例.

∵BO平分∠ABC,∴∠1=∠2.

又∵OD∥AB,∴∠1=∠3.

∴∠2=∠3.∴DB=OD.

∴△OBD是等腰三角形.

(2)由

(1)可知,DB=DO.同理EO=EC.

∴△ODE的周长=OD+DE+EO=DB+DE+EC=BC.

∴△ODE的周长与BC的关系是:

△ODE的周长=BC.

(3)由

(2)可知,△ODE的周长=BC.

又∵BC=12cm,

∴△ODE的周长=12cm.

学生做一做如图14-76所示,在△ABC中,BO,CO分别为∠ABC,∠ACB的平分线,经过点O的直线DE∥BC,交AB于点D,交AC于点E.

(1)图中等腰三角形分别是;

(2)DE与BD+EC的关系是:

BD=.

老师评一评欲证等腰三角形,需证角相等.

(1)∵DE∥BC,∴∠DOB=∠OBC.

又∵BO平分∠ABC,∴∠ABO=∠OBC.

∴∠DOB=∠ABO.∴DB=DO.

∴△DBO是等腰三角形.

同理EO=EC.

∴△EOC是等腰三角形.

(2)DE=DO+OE=BD+EC,

∴DE=BD+EC.

例14如图14-77所示,在△ABC中,∠ACB=90°,BD=BC,AE=AC.试问:

∠DCE是否与∠A有关?

如果无关,求∠DCE的大小.

解:

∠DCE与∠A无关,∠DCE=45°.理由如下:

∵BD=BC,∴∠BDC=∠BCD.

∴∠BDC=

(180°-∠B)=90°-

∠B.

又∵AE=AC,∴∠AEC=∠ACE.

∴∠AEC=

(180°-∠A)=90°-

∠A.

∴∠AEC+∠BDC=(90°-

∠A)+(90°-

∠B)

=180°-

(∠A+∠B).

又∵∠ACB=90°,

∴∠BDC+∠AEC=180°-

×90°=135°.

∴∠BDC+∠AEC=135°.

∴∠DCE=45°.

例15如图14-78所示,在△ABC中,AD⊥BC于D,∠B=2∠C.求证AB+BD=CD.

分析如何利用条件∠B=2∠C,又如何得到AB+BD,不同的思考方向,会找到不同的解题方法.

证明:

在CD上截取DE=DB,连接AE,

∵AD⊥BC,∴AE=AB.

∴∠B=∠AEB.

又∵∠AEB=∠C+∠CAE=2∠C,

∴∠CAE=∠C.∴AE=EC.

∴AB+BD=AE+BD=EC+ED=CD.

∴AB+BD=CD.

例16如图14-79所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若OC=4,则PD等于()

A.4B.3C.2D.1

分析本题中有角平分线、平行线,这是等腰三角形的重要形成条件,另外,PD⊥OA于D,显然需要作另外一个垂直,这是角平分线性质的一个重要应用.

如图14-80所示,

过点P作PE⊥OB于E.

又∵OP平分∠BOA,PD⊥OA于D.

∴PD=PE.

∵PC∥OA,∴∠2=∠3.

又∵∠1=∠2,∠1=15°,

∴∠3=15°,CO=CP.

∴∠4=∠1+∠3=2∠1=15°×2=30°.

在Rt△CPE中,∠4=30°,∠CEP=90°,

∴PE=

PC=

OC=

×4=2.

∴PD=2,故正确答案为C项.

学生做一做如图14-81所示,已知矩形ABCD,沿对角线AC把△DAC翻折,AD′与BC相交于点E.判断△AEC的形状.

老师评一评△AEC是等腰三角形,关键是证明∠EAC=∠ECA.

理由如下:

由题意可知,△ADC≌△AD′C,

∴∠DAC=∠D′AC.

又∵AD∥BC,∴∠DAC=∠ACE.

∴∠D′AC=∠ACE.∴EA=EC.

∴△EAC是等腰三角形.

小结

(1)证明线段相等是最基本的几何问题,目前常用证法有:

①若两条线段属于两个三角形,则考虑对应的三角形全等;

②若两条线段是同一个三角形两边,则考虑用等角对等边证明;

③寻找中间线段,通过等量代换来证明.

(2)类似地,我们可以对证明角相等,等边三角形的判定作归纳总结.

在证明等腰三角形时,常需应用作辅助线构造全等三角形,进而应用等腰三角形的性质为题目服务,常用的构造方法有:

①“角平分线+平行线”构造等腰三角形;

②“角平分线+垂线”构造等腰三角形;

③用“垂直平分线”构造等腰三角形;

④用“三角形中角的2倍关系”构造等腰三角形.

中考展望点击中考

中考命题总结与展望

这部分内容在中考中多以填空、选择的形式出现,在综合题中,等腰三角形的性质和判定的知识较为常见。

中考试题预测

例1如图14-82所示,在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证BF=2CF.

分析证线段2倍关系,通常考虑在直角三角形中是否有30°角.

证明:

如图14-83所示,连接AF,

∵AB=AC,∠BAC=120°,

∴∠B=∠C=

=30°.

又∵EF是AC的垂直平分线,

∴FA=FC.∴∠C=∠FAC=30°,

∴∠BAF=∠BAC-∠FAC=120°-30°=90°.

在Rt△BAF中,∠BAF=90°,∠B=30°,

∴AF=

BF.∴CF=

BF.

∴BF=2CF.

例2如图14-84所示,D是△ABC边上的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:

(1)△ABC是等腰三角形;

(2)当∠A=90°时,试判断四边形AFDE是什么形状的四边形.

分析

(1)只需证△BFD≌△CED,证∠B=∠C即可.

(2)只需证邻边相等,因为邻边相等的长方形是正方形.

证明:

(1)∵DF⊥AB,DE⊥AC,

∴∠BFD=∠CED=90°.

又∵D是BC的中点,∴BD=CD.

在Rt△BFD和Rt△CED中,

∴Rt△BFD≌Rt△CED(HL).

∴∠B=∠C(全等三角形的对应角相等).

∴AB=AC(等角对等边).

∴△ABC是等腰三角形.

解:

(2)当∠A=90°时,四边形AFDE是正方形.

理由如下:

∵∠AFD=∠AED=∠A=90°,

∴四边形AFDE是长方形.

(1)知△BFD≌△CED,∴FD=ED.

∴四边形AFDE是正方形.

例3如图14-85所示,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于一点P,若∠A=50°,则∠BPC的度数是()

A.150°B.130°C.120°D.100°

分析本题主要考查:

(1)直角三角形两锐角互余;

(2)三角形内角和是180°.具体过程如下:

∵BE⊥AC,CD⊥AB,

∴∠AEB=∠ADC=90°.

又∵∠A=50°,

∴∠ABE=∠ACD=90°-50°=40°.

又∵∠A=50°,

∴∠ABC+∠ACB=180°-∠A=130°.

∴∠

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 企业管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1