泰勒公式外文翻译.docx
《泰勒公式外文翻译.docx》由会员分享,可在线阅读,更多相关《泰勒公式外文翻译.docx(22页珍藏版)》请在冰豆网上搜索。
泰勒公式外文翻译
Taylor'sFormulaandtheStudyofExtrema
1.Taylor'sFormulaforMappings
Theorem1.Ifamappingf:
u「.yfromaneighborhoodu=uxofapointxinanormedspaceXintoanormedspaceYhasderivativesuptoorderr1」nelusiveinUandhasann-thorderderivativefnxatthepointx,then
fxh=fx•f,Xh+fnxhn
(1)
ash—;o.
Equality
(1)isoneofthevarietiesofTaylor'sformula,writtenhereforrathergeneralclassesofmappings.
Proof.WeproveTaylor'sformulabyinduction.
Forn=1itistruebydefinitionoff'x.
Assumeformula
(1)istrueforsomen_i三n.
Thenbythemean-valuetheorem,formula(12)ofSect.10.5,andtheinductionhypothesis,weobtain.
fxh
as—o.
WeshallnottakethetimeheretodiscussotherversionsofTaylor'sformula,whicharesometimesquiteuseful.Theywerediscussedearlierindetailfornumericalfunctions.Atthispointweleaveittothereadertoderivethem(see,forexample,Problem1below).
2.MethodsofStudyingInteriorExtrema
UsingTaylor'sformula,weshallexhibitnecessaryconditionsandalsosufficientconditionsforaninteriorlocalextremumofreal-valuedfunctionsdefinedonanopensubsetofanormedspace.Asweshallsee,theseconditionsareanalogoustothedifferentialconditionsalreadyknowntousforanextremumofareal-valuedfunctionofarealvariable.
Theorem2.Letf:
u—;rbeareal-valuedfunctiondefinedonanopensetUinanormedspaceXandhavingcontinuousderivativesuptoorderk—1_1inclusiveinaneighborhoodofapointxandaderivativefkxoforderkatthepointxitself.
Iff,x=o/-,fk4x=oandfkx=o,thenforxtobeanextremumofthefunctionfitis:
necessarythatkbeevenandthattheformfkxhkbesemidefinite,and
sufficientthatthevaluesoftheform
xhkontheunitsphereh=1beboundedaway
fromzero;moreover,xisalocalminimumiftheinequalities
fkxhk.0,
holdonthatsphere,andalocalmaximumif
fkXhk=:
:
:
0,
x.The
Proof.FortheproofweconsidertheTaylorexpansion⑴offinaneighborhoodofassumptionsenableustowrite
xh-fx詁fkxhkh
where:
hisareal-valuedfunction,and:
h「0ash>0.Wefirstprovethenecessaryconditions.
Sincefkx=0,thereexistsavectorh0=0onwhichfkxhS=0.Thenforvaluesofthe
realparametertsufficientlyclosetozero,
k
h:
亠很[th。
h0
f(x柚0J-f(x)=£■fCjx牠ktot(th0Jh0k
k!
andtheexpressionintheouterparentheseshasthesamesignasxh0.
Forxtobeanextremumitisnecessaryfortheleft-handside(andhencealsotheright-handside)ofthislastequalitytobeofconstantsignwhentchangessign.Butthisispossibleonlyifkiseven.
Thisreasoningshowsthatifxisanextremum,thenthesignofthediffereneefxth0x
isthesameasthatoffkxhfforsufficientlysmallt;henceinthatcasetherecannotbetwovectorsm,natwhichtheformfkxassumesvalueswithoppositesigns.
Wenowturntotheproofofthesufficiencyconditions.Fordefinitenessweconsiderthecasewhenfkxhk:
:
:
乙>0forh=1.Thenand,since:
-h^-0ash—0,thelastterminthisinequalityispositiveforallvectorsh=0sufficientlyclosetozero.Thus,forallsuchvectorsh,
f(x+h)-f(xfF(Jxhk+口小$
出E(h”
fXh_fX.0,
thatis,xisastrictlocalminimum.
Thesufficientconditionforastrictlocalmaximumisverifiedsimilarly.
Remark1.IfthespaceXisfinite-dimensional,theunitspheresx;1withcenteratx三x,beingaclosedboundedsubsetofX,iscompact.Thenthecontinuousfunctionfkxhk=二讥fxF—hik(ak-form)hasbothamaximalandaminimalvalueonsx;1.Ifthesevaluesareofoppositesign,thenfdoesnothaveanextremumatx.Iftheyarebothofthesamesign,then,aswasshowninTheorem2,thereisanextremum.Inthelattercase,asufficientconditionforanextremumcanobviouslybestatedastheequivalentrequirementthattheformfkxhkbeeitherpositive-ornegative-definite.
ItwasthisformoftheconditionthatweencounteredinstudyingrealvaluedfunctionsonRn.
Remark2.Aswehaveseenintheexampleoffunctions:
Rn—;r,thesemi-definitenessoftheformfkxhkexhibitedinthenecessaryconditionsforanextremumisnotasufficientcriterionforanextremum.
Remark3.Inpractice,whenstudyingextremaofdifferentiablefunctionsonenormallyusesonlythefirstorseconddifferentials.Iftheuniquenessandtypeofextremumareobviousfromthemeaningoftheproblembeingstudied,onecanrestrictattentiontothefirstdifferentialwhenseekinganextremum,simplyfindingthepointxwheref,x=0
3.SomeExamples
Example1.Letl二c1r3;randf^c1a,b;R.Inotherwords,J,u2,u3—lJ,u2,u3
isacontinuouslydifferentiablereal-valuedfunctiondefinedinr3andx—fxasmoothreal-valuedfunctiondefinedontheclosedintervalb,b「r.
Considerthefunction
F:
C1a,b;RLR
(2)
definedbytherelation
f•二C1a,b;R—Ff
b
Lx,fx,f,xd^R(3)
a
Thus,
(2)isareal-valuedfunctionaldefinedonthesetoffunctionsc1a,b;r.
Thebasicvariationalprinciplesconnectedwithmotionareknowninphysicsandmechanics.Accordingtotheseprinciples,theactualmotionsaredistinguishedamongalltheconceivablemotionsinthattheyproceedalongtrajectoriesalongwhichcertainfunctionalshaveanextremum.Questionsconnectedwiththeextremaoffunctionalsarecentralinoptimal
controltheory.Thus,findingandstudyingtheextremaoffunctionalsisaproblemofintrinsicimportanee,andthetheoryassociatedwithitisthesubjectofalargeareaofanalysis-thecalculusofvariations.Wehavealreadydoneafewthingstomakethetransitionfromtheanalysisoftheextremaofnumericalfunctionstotheproblemoffindingandstudyingextremaoffunctionalsseemnaturaltothereader.However,weshallnotgodeeplyintothespecialproblemsofvariationalcalculus,butratherusetheexampleofthefunctional(3)toillustrateonlythegeneralideasofdifferentiationandstudyoflocalextremaconsideredabove.
Weshallshowthatthefunctional(3)isadifferentiatemappingandfinditsdifferential.
Weremarkthatthefunction(3)canberegardedasthecompositionofthemappings
Fifx二Lx,fx,f,x
definedbytheformula
Fi:
c1a,b;R>ca,b;R
followedbythemapping
g:
二Ca,b;R—F2ggxdx:
二R
a
Bypropertiesoftheintegral,themappingf?
isobviouslylinearandcontinuous,sothatitsdifferentiabilityisclear.
WeshallshowthatthemappingF1isalsodifferentiable,andthat
Ff(fh(x)=©L(x,f(x,ffx为(x旷岳L(x,f(x)f[x)
forh.二C1a,b;;R.
Indeed,bythecorollarytothemean-valuetheorem,wecanwriteinthepresentcase
3
L“+sfii,u2+&,u3X1,u2,u3卜迟占L(J,u2,u3
im
-sup:
:
iLuTJiLu1;:
2LuT-「2Lu1;:
3LuT:
-pLu.■:
0-1
(8)
乞30貨;;:
iLu•F-;]Luinjax
i迄,2,311
where
Ifwenowrecallthatthenormfc1ofthefunctionfin
c1a,b;Ris
f
maxfc
u=u1,u2,u3and=卫,「2,「3.
(wherefcisthemaximumabsolutevalueofthefunctionontheclosedintervala,bl),then,
settingu1=x,u2=fx,u3=f,x,1=o,•2=hx,and3x,weobtainfrominequality(8),takingaccountoftheuniformcontinuityofthefunctionsjiLu1,u2,u3,^1,2,3,onbounded
subsetsofr,that
max
o<<
Lx,fxhx,f‘xh‘x_Lx,fx,f'x—^Lx,fx,f'xhx「BLx,fx,f'xh‘x*
=ohjashj
ButthismeansthatEq.(7)holds.
Bythechainrulefordifferentiatingacompositefunction,wenowconcludethatthefunctional(3)isindeeddifferentiable,and
b
F'fh二a±Lx,fX,f'Xhx:
:
3Lx,fX,f'Xh'Xdx(9)
Weoftenconsidertherestrictionofthefunctional(3)totheaffinespaceconsistingofthefunctionsf二c1a,b;Rthatassumefixedvaluesfa=a,fb=battheendpointsoftheclosedintervala,bIInthiscase,thefunctionshinthetangentspacerc:
musthavethevaluezeroattheendpointsoftheclosedintervala,blTakingthisfactintoaccount,wemay
integratebypartsin(9)andbringitintotheform
F,f
h=a-2Lx,fX,f,X-:
3Lx,fx,f,xhxdx
(10)
ofcourseundertheassumptionthatandfbelongtothecorrespondingclassc2.
Inparticular,iffisanextremum(extremal)ofsuchafunctional,thenbyTheorem2wehavef,fh=oforeveryfunctionhc1a,b;Rsuchthatha=hb=o.Fromthisandrelation(10)onecaneasilyconclude(seeProblem3below)thatthefunctionfmustsatisfytheequation
(11)
-2Lx,fx,f,x;:
3Lx,fx,f,x=0
Thisisafrequently-encounteredformoftheequationknowninthecalculusofvariationsastheEuler-Lagrangeequation.
Letusnowconsidersomespecificexamples.
Example2.Theshortest-pathproblem
Amongallthecurvesinaplanejoiningtwofixedpoints,findthecurvethathasminimallength.
Theanswerinthiscaseisobvious,anditratherservesasacheckontheformalcomputationswewillbedoinglater.
WeshallassumethatafixedCartesiancoordinatesystemhasbeenchosenintheplane,inwhichthetwopointsare,forexample,o,oand10.Weconfineourselvestojustthecurvesthatarethegraphsoffunctionsf■c10,1;rassumingthevaluezeroatbothendsoftheclosedinterval0,d.Thelengthofsuchacurve
fch(^+(f,2(xdx(12)
dependsonthefunctionfandisafunctionalofthetypeconsideredinExample1.InthiscasethefunctionLhastheform
andthereforethenecessarycondition(11)foranextremalherereducestotheequation
/X
2_0I—**
fromwhichitfollowsthat
一f‘x=常数(13)
\:
1+(f,2(x)
ontheclosedinterval0,11
Sincethefunction一uisnotconstantonanyinterval,Eq.(13)ispossibleonlyif
$14u2
f,x三constona,b].Thusasmoothext