泰勒公式外文翻译.docx

上传人:b****1 文档编号:23047291 上传时间:2023-04-30 格式:DOCX 页数:22 大小:89.15KB
下载 相关 举报
泰勒公式外文翻译.docx_第1页
第1页 / 共22页
泰勒公式外文翻译.docx_第2页
第2页 / 共22页
泰勒公式外文翻译.docx_第3页
第3页 / 共22页
泰勒公式外文翻译.docx_第4页
第4页 / 共22页
泰勒公式外文翻译.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

泰勒公式外文翻译.docx

《泰勒公式外文翻译.docx》由会员分享,可在线阅读,更多相关《泰勒公式外文翻译.docx(22页珍藏版)》请在冰豆网上搜索。

泰勒公式外文翻译.docx

泰勒公式外文翻译

Taylor'sFormulaandtheStudyofExtrema

1.Taylor'sFormulaforMappings

Theorem1.Ifamappingf:

u「.yfromaneighborhoodu=uxofapointxinanormedspaceXintoanormedspaceYhasderivativesuptoorderr1」nelusiveinUandhasann-thorderderivativefnxatthepointx,then

fxh=fx•f,Xh+fnxhn

(1)

ash—;o.

Equality

(1)isoneofthevarietiesofTaylor'sformula,writtenhereforrathergeneralclassesofmappings.

Proof.WeproveTaylor'sformulabyinduction.

Forn=1itistruebydefinitionoff'x.

Assumeformula

(1)istrueforsomen_i三n.

Thenbythemean-valuetheorem,formula(12)ofSect.10.5,andtheinductionhypothesis,weobtain.

fxh

as—o.

WeshallnottakethetimeheretodiscussotherversionsofTaylor'sformula,whicharesometimesquiteuseful.Theywerediscussedearlierindetailfornumericalfunctions.Atthispointweleaveittothereadertoderivethem(see,forexample,Problem1below).

2.MethodsofStudyingInteriorExtrema

UsingTaylor'sformula,weshallexhibitnecessaryconditionsandalsosufficientconditionsforaninteriorlocalextremumofreal-valuedfunctionsdefinedonanopensubsetofanormedspace.Asweshallsee,theseconditionsareanalogoustothedifferentialconditionsalreadyknowntousforanextremumofareal-valuedfunctionofarealvariable.

Theorem2.Letf:

u—;rbeareal-valuedfunctiondefinedonanopensetUinanormedspaceXandhavingcontinuousderivativesuptoorderk—1_1inclusiveinaneighborhoodofapointxandaderivativefkxoforderkatthepointxitself.

Iff,x=o/-,fk4x=oandfkx=o,thenforxtobeanextremumofthefunctionfitis:

necessarythatkbeevenandthattheformfkxhkbesemidefinite,and

sufficientthatthevaluesoftheform

xhkontheunitsphereh=1beboundedaway

fromzero;moreover,xisalocalminimumiftheinequalities

fkxhk.0,

holdonthatsphere,andalocalmaximumif

fkXhk=:

0,

x.The

Proof.FortheproofweconsidertheTaylorexpansion⑴offinaneighborhoodofassumptionsenableustowrite

xh-fx詁fkxhkh

where:

hisareal-valuedfunction,and:

h「0ash>0.Wefirstprovethenecessaryconditions.

Sincefkx=0,thereexistsavectorh0=0onwhichfkxhS=0.Thenforvaluesofthe

realparametertsufficientlyclosetozero,

k

h:

亠很[th。

h0

f(x柚0J-f(x)=£■fCjx牠ktot(th0Jh0k

k!

andtheexpressionintheouterparentheseshasthesamesignasxh0.

Forxtobeanextremumitisnecessaryfortheleft-handside(andhencealsotheright-handside)ofthislastequalitytobeofconstantsignwhentchangessign.Butthisispossibleonlyifkiseven.

Thisreasoningshowsthatifxisanextremum,thenthesignofthediffereneefxth0x

isthesameasthatoffkxhfforsufficientlysmallt;henceinthatcasetherecannotbetwovectorsm,natwhichtheformfkxassumesvalueswithoppositesigns.

Wenowturntotheproofofthesufficiencyconditions.Fordefinitenessweconsiderthecasewhenfkxhk:

乙>0forh=1.Thenand,since:

-h^-0ash—0,thelastterminthisinequalityispositiveforallvectorsh=0sufficientlyclosetozero.Thus,forallsuchvectorsh,

f(x+h)-f(xfF(Jxhk+口小$

出E(h”

fXh_fX.0,

thatis,xisastrictlocalminimum.

Thesufficientconditionforastrictlocalmaximumisverifiedsimilarly.

Remark1.IfthespaceXisfinite-dimensional,theunitspheresx;1withcenteratx三x,beingaclosedboundedsubsetofX,iscompact.Thenthecontinuousfunctionfkxhk=二讥fxF—hik(ak-form)hasbothamaximalandaminimalvalueonsx;1.Ifthesevaluesareofoppositesign,thenfdoesnothaveanextremumatx.Iftheyarebothofthesamesign,then,aswasshowninTheorem2,thereisanextremum.Inthelattercase,asufficientconditionforanextremumcanobviouslybestatedastheequivalentrequirementthattheformfkxhkbeeitherpositive-ornegative-definite.

ItwasthisformoftheconditionthatweencounteredinstudyingrealvaluedfunctionsonRn.

Remark2.Aswehaveseenintheexampleoffunctions:

Rn—;r,thesemi-definitenessoftheformfkxhkexhibitedinthenecessaryconditionsforanextremumisnotasufficientcriterionforanextremum.

Remark3.Inpractice,whenstudyingextremaofdifferentiablefunctionsonenormallyusesonlythefirstorseconddifferentials.Iftheuniquenessandtypeofextremumareobviousfromthemeaningoftheproblembeingstudied,onecanrestrictattentiontothefirstdifferentialwhenseekinganextremum,simplyfindingthepointxwheref,x=0

3.SomeExamples

Example1.Letl二c1r3;randf^c1a,b;R.Inotherwords,J,u2,u3—lJ,u2,u3

isacontinuouslydifferentiablereal-valuedfunctiondefinedinr3andx—fxasmoothreal-valuedfunctiondefinedontheclosedintervalb,b「r.

Considerthefunction

F:

C1a,b;RLR

(2)

definedbytherelation

f•二C1a,b;R—Ff

b

Lx,fx,f,xd^R(3)

a

Thus,

(2)isareal-valuedfunctionaldefinedonthesetoffunctionsc1a,b;r.

Thebasicvariationalprinciplesconnectedwithmotionareknowninphysicsandmechanics.Accordingtotheseprinciples,theactualmotionsaredistinguishedamongalltheconceivablemotionsinthattheyproceedalongtrajectoriesalongwhichcertainfunctionalshaveanextremum.Questionsconnectedwiththeextremaoffunctionalsarecentralinoptimal

controltheory.Thus,findingandstudyingtheextremaoffunctionalsisaproblemofintrinsicimportanee,andthetheoryassociatedwithitisthesubjectofalargeareaofanalysis-thecalculusofvariations.Wehavealreadydoneafewthingstomakethetransitionfromtheanalysisoftheextremaofnumericalfunctionstotheproblemoffindingandstudyingextremaoffunctionalsseemnaturaltothereader.However,weshallnotgodeeplyintothespecialproblemsofvariationalcalculus,butratherusetheexampleofthefunctional(3)toillustrateonlythegeneralideasofdifferentiationandstudyoflocalextremaconsideredabove.

Weshallshowthatthefunctional(3)isadifferentiatemappingandfinditsdifferential.

Weremarkthatthefunction(3)canberegardedasthecompositionofthemappings

Fifx二Lx,fx,f,x

definedbytheformula

Fi:

c1a,b;R>ca,b;R

followedbythemapping

g:

二Ca,b;R—F2ggxdx:

二R

a

Bypropertiesoftheintegral,themappingf?

isobviouslylinearandcontinuous,sothatitsdifferentiabilityisclear.

WeshallshowthatthemappingF1isalsodifferentiable,andthat

Ff(fh(x)=©L(x,f(x,ffx为(x旷岳L(x,f(x)f[x)

forh.二C1a,b;;R.

Indeed,bythecorollarytothemean-valuetheorem,wecanwriteinthepresentcase

3

L“+sfii,u2+&,u3X1,u2,u3卜迟占L(J,u2,u3

im

-sup:

iLuTJiLu1;:

2LuT-「2Lu1;:

3LuT:

-pLu.■:

0-1

(8)

乞30貨;;:

iLu•F-;]Luinjax

i迄,2,311

where

Ifwenowrecallthatthenormfc1ofthefunctionfin

c1a,b;Ris

f

maxfc

u=u1,u2,u3and=卫,「2,「3.

(wherefcisthemaximumabsolutevalueofthefunctionontheclosedintervala,bl),then,

settingu1=x,u2=fx,u3=f,x,1=o,•2=hx,and3x,weobtainfrominequality(8),takingaccountoftheuniformcontinuityofthefunctionsjiLu1,u2,u3,^1,2,3,onbounded

subsetsofr,that

max

o<<

Lx,fxhx,f‘xh‘x_Lx,fx,f'x—^Lx,fx,f'xhx「BLx,fx,f'xh‘x*

=ohjashj

ButthismeansthatEq.(7)holds.

Bythechainrulefordifferentiatingacompositefunction,wenowconcludethatthefunctional(3)isindeeddifferentiable,and

b

F'fh二a±Lx,fX,f'Xhx:

3Lx,fX,f'Xh'Xdx(9)

Weoftenconsidertherestrictionofthefunctional(3)totheaffinespaceconsistingofthefunctionsf二c1a,b;Rthatassumefixedvaluesfa=a,fb=battheendpointsoftheclosedintervala,bIInthiscase,thefunctionshinthetangentspacerc:

musthavethevaluezeroattheendpointsoftheclosedintervala,blTakingthisfactintoaccount,wemay

integratebypartsin(9)andbringitintotheform

F,f

h=a-2Lx,fX,f,X-:

3Lx,fx,f,xhxdx

(10)

ofcourseundertheassumptionthatandfbelongtothecorrespondingclassc2.

Inparticular,iffisanextremum(extremal)ofsuchafunctional,thenbyTheorem2wehavef,fh=oforeveryfunctionhc1a,b;Rsuchthatha=hb=o.Fromthisandrelation(10)onecaneasilyconclude(seeProblem3below)thatthefunctionfmustsatisfytheequation

(11)

-2Lx,fx,f,x;:

3Lx,fx,f,x=0

Thisisafrequently-encounteredformoftheequationknowninthecalculusofvariationsastheEuler-Lagrangeequation.

Letusnowconsidersomespecificexamples.

Example2.Theshortest-pathproblem

Amongallthecurvesinaplanejoiningtwofixedpoints,findthecurvethathasminimallength.

Theanswerinthiscaseisobvious,anditratherservesasacheckontheformalcomputationswewillbedoinglater.

WeshallassumethatafixedCartesiancoordinatesystemhasbeenchosenintheplane,inwhichthetwopointsare,forexample,o,oand10.Weconfineourselvestojustthecurvesthatarethegraphsoffunctionsf■c10,1;rassumingthevaluezeroatbothendsoftheclosedinterval0,d.Thelengthofsuchacurve

fch(^+(f,2(xdx(12)

dependsonthefunctionfandisafunctionalofthetypeconsideredinExample1.InthiscasethefunctionLhastheform

andthereforethenecessarycondition(11)foranextremalherereducestotheequation

/X

2_0I—**

fromwhichitfollowsthat

一f‘x=常数(13)

\:

1+(f,2(x)

ontheclosedinterval0,11

Sincethefunction一uisnotconstantonanyinterval,Eq.(13)ispossibleonlyif

$14u2

f,x三constona,b].Thusasmoothext

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 纺织轻工业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1