线性代数的过去现在将来及应用文档格式.docx

上传人:b****8 文档编号:22920751 上传时间:2023-02-06 格式:DOCX 页数:20 大小:116KB
下载 相关 举报
线性代数的过去现在将来及应用文档格式.docx_第1页
第1页 / 共20页
线性代数的过去现在将来及应用文档格式.docx_第2页
第2页 / 共20页
线性代数的过去现在将来及应用文档格式.docx_第3页
第3页 / 共20页
线性代数的过去现在将来及应用文档格式.docx_第4页
第4页 / 共20页
线性代数的过去现在将来及应用文档格式.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

线性代数的过去现在将来及应用文档格式.docx

《线性代数的过去现在将来及应用文档格式.docx》由会员分享,可在线阅读,更多相关《线性代数的过去现在将来及应用文档格式.docx(20页珍藏版)》请在冰豆网上搜索。

线性代数的过去现在将来及应用文档格式.docx

现代线性代数的历史可以上溯到1843年和1844年。

1843年,哈密顿发现了四元数。

1844年,格拉斯曼发表了他的著作《DielineareAusdehnungslehre》。

1857年,阿瑟·

凯莱介入了矩阵,这是最基础的线性代数思想之一。

这些早期的文献掩饰了线性代数主要在二十世纪发展的事实:

在抽象代数的环论开发之前叫做矩阵的类似数的对象是难于名次列前的。

随着狭义相对论的到来,很多开拓者增值了线性代数的微妙。

进一步的,解偏微分方程的克莱姆法则的例行应用导致了大学的标准教育中包括了线性代数。

1888年,弗兰西斯·

高尔顿发起了相关系数的应用。

经常有多于一个随机变量出现并且它们可以互相关。

在多变元随机变量的统计分析中,相关矩阵是自然的工具。

所以这种随机向量的统计研究帮助了矩阵用途的开发。

由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。

直到十八世纪末,线性代数的领域还只限于平面与空间。

十九世纪上半叶才完成了到n维向量空间的过渡矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点.1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。

托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。

不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。

  “代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今。

在数学中的地位

  线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。

  主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)。

  ①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位;

  ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;

  ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;

  ④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。

基本介绍

  线性(linear),指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;

非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。

  线性代数起源于对二维和三维直角坐标系的研究。

在这里,一个向量是一个有方向的线段,由长度和方向同时表示。

这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。

这就是实数向量空间的第一个例子。

  现代线性代数已经扩展到研究任意或无限维空间。

一个维数为n的向量空间叫做n维空间。

在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。

尽管许多人不容易想象n维空间中的向量,这样的向量(即n元组)用来表示数据非常有效。

由于作为n元组,向量是n个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。

比如,在经济学中可以使用8维向量来表示8个国家的国民生产总值(GNP)。

当所有国家的顺序排定之后,比如(中国,美国,英国,法国,德国,西班牙,印度,澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的GNP。

这里,每个国家的GNP都在各自的位置上。

  作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。

一些显著的例子有:

不可逆线性映射或矩阵的群,向量空间的线性映射的环。

线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。

  向量空间是在域上定义的,比如实数域或复数域。

线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。

所有这种变换组成的集合本身也是一个向量空间。

如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。

对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。

  我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。

比如微分学研究很多函数线性近似的问题。

在实践中与非线性问题的差异是很重要的。

  线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。

这是数学与工程学中最主要的应用之一。

由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。

如果所研究的关联性是线性的,那么称这个问题为线性问题。

历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。

最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。

另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展

行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。

行列式是由莱布尼茨和日本数学家关孝和发明的。

1693年4月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。

同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。

1750年,瑞士数学家克莱姆(G.Cramer,1704-1752)在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。

稍后,数学家贝祖(E.Bezout,1730-1783)将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。

在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙(A-T.Vandermonde,1735-1796)。

范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。

特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。

就对行列式本身这一点来说,他是这门理论的奠基人。

1772年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。

继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。

1815年,柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。

其中主要结果之一是行列式的乘法定理。

另外,他第一个把行列式的元素排成方阵,采用双足标记法;

引进了行列式特征方程的术语;

给出了相似行列式概念;

改进了拉普拉斯的行列式展开定理并给出了一个证明等。

19世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士?

西尔维斯特(J.Sylvester,1814-1894)。

他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学的不平等对待。

西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个

次和一个

次的多项式中消去x的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要条件这一结果,但没有给出证明。

继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比(J.Jacobi,1804-1851),他引进了函数行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。

雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。

由于行列式在数学分析、几何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。

整个19世纪都有行列式的新结果。

除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。

矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。

“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。

而实际上,矩阵这个课题在诞生之前就已经发展的很好了。

从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。

在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。

英国数学家凯莱(A.Cayley,1821-1895)一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。

凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。

1858年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。

文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。

另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。

凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。

1855年,埃米特(C.Hermite,1822-1901)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。

后来,克莱伯施(A.Clebsch,1831-1872)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。

泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论。

在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917)的贡献是不可磨灭的。

他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。

1854年,约当研究了矩阵化为标准型的问题。

1892年,梅茨勒(H.Metzler)引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。

傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。

矩阵的发展是与线性变换密切相连的。

到19世纪它还仅占线性变换理论形成中有限的空间。

现代向量空间的定义是由Peano于1888年提出的。

二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。

由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。

于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。

而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。

矩阵及其理论现已广泛地应用于现代科技的各个领域。

4.线性方程组

线性方程组的解法,早在中国古代的数学著作《九章算术?

方程》章中已作了比较完整的论述。

其中所述方法实质上相当于现代的对方程组的增广矩阵施行初等行变换从而消去未知量的方法,即高斯消元法。

在西方,线性方程组的研究是在17世纪后期由莱布尼茨开创的。

他曾研究含两个未知量的三个线性方程组组成的方程组。

麦克劳林在18世纪上半叶研究了具有二、三、四个未知量的线性方程组,得到了现在称为克莱姆法则的结果。

克莱姆不久也发表了这个法则。

18世纪下半叶,法国数学家贝祖对线性方程组理论进行了一系列研究,证明了

元齐次线性方程组有非零解的条件是系数行列式等于零。

19世纪,英国数学家史密斯(H.Smith)和道奇森(C-L.Dodgson)继续研究线性方程组理论,前者引进了方程组的增广矩阵和非增广矩阵的概念,后者证明了

个未知数

个方程的方程组相容的充要条件是系数矩阵和增广矩阵的秩相同。

这正是现代方程组理论中的重要结果之一。

大量的科学技术问题,最终往往归结为解线性方程组。

因此在线性方程组的数值解法得到发展的同时,线性方程组解的结构等理论性工作也取得了令人满意的进展。

现在,线性方程组的数值解法在计算数学中占有重要地位。

5.线性代数的进一步深入发展——二次型

二次型也称为“二次形式”,数域

上的

元二次齐次多项式称为数域

元二次型。

二次型是我们线性代数教材的后继内容,为了我们后面的学习,这里对于二次型的发展历史我们也作简单介绍。

二次型的系统研究是从18世纪开始的,它起源于对二次曲线和二次曲面的分类问题的讨论。

将二次曲线和二次曲面的方程变形,选有主轴方向的轴作为坐标轴以简化方程的形状,这个问题是在18世纪引进的。

柯西在其著作中给出结论:

当方程是标准型时,二次曲面用二次项的符号来进行分类。

然而,那时并不太清楚,在化简成标准型时,为何总是得到同样数目的正项和负项。

西尔维斯特回答了这个问题,他给出了

个变数的二次型的惯性定律,但没有证明。

这个定律后被雅可比重新发现和证明。

1801年,高斯在《算术研究》中引进了二次型的正定、负定、半正定和半负定等术语。

二次型化简的进一步研究涉及二次型或行列式的特征方程的概念。

特征方程的概念隐含地出现在欧拉的著作中,拉格朗日在其关于线性微分方程组的著作中首先明确地给出了这个概念。

而三个变数的二次型的特征值的实性则是由阿歇特(J-N.P.Hachette)、蒙日和泊松(S.D.Poisson,1781-1840)建立的。

柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。

后来,他又证明了

个变数的两个二次型能用同一个线性变换同时化成平方和。

1851年,西尔维斯特在研究二次曲线和二次曲面的切触和相交时需要考虑这种二次曲线和二次曲面束的分类。

在他的分类方法中他引进了初等因子和不变因子的概念,但他没有证明“不变因子组成两个二次型的不变量的完全集”这一结论。

1858年,魏尔斯特拉斯对同时化两个二次型成平方和给出了一个一般的方法,并证明,如果二次型之一是正定的,那么即使某些特征根相等,这个化简也是可能的。

魏尔斯特拉斯比较系统的完成了二次型的理论并将其推广到双线性型。

求根问题是方程理论的一个中心课题。

16世纪,数学家们解决了三、四次方程的求根公式,对于更高次方程的求根公式是否存在,成为当时的数学家们探讨的又一个问题。

这个问题花费了不少数学家们大量的时间和精力。

经历了屡次失败,但总是摆脱不了困境。

到了18世纪下半叶,拉格朗日认真总结分析了前人失败的经验,深入研究了高次方程的根与置换之间的关系,提出了预解式概念,并预见到预解式和各根在排列置换下的形式不变性有关。

但他最终没能解决高次方程问题。

拉格朗日的弟子鲁菲尼(Ruffini,1765-1862)也做了许多努力,但都以失败告终。

高次方程的根式解的讨论,在挪威杰出数学家阿贝尔那里取得了很大进展。

阿贝尔(N.K.Abel,1802-1829)只活了27岁,他一生贫病交加,但却留下了许多创造性工作。

1824年,阿贝尔证明了次数大于四次的一般代数方程不可能有根式解。

但问题仍没有彻底解决,因为有些特殊方程可以用根式求解。

因此,高于四次的代数方程何时没有根式解,是需要进一步解决的问题。

这一问题由法国数学家伽罗瓦全面透彻地给予解决。

伽罗瓦(E.Galois,1811-1832)仔细研究了拉格朗日和阿贝尔的著作,建立了方程的根的“容许”置换,提出了置换群的概念,得到了代数方程用根式解的充分必要条件是置换群的自同构群可解。

从这种意义上,我们说伽罗瓦是群论的创立者。

伽罗瓦出身于巴黎附近一个富裕的家庭,幼时受到良好的家庭教育,只可惜,这位天才的数学家英年早逝,1832年5月,由于政治和爱情的纠葛,在一次决斗中被打死,年仅21岁。

置换群的概念和结论是最终产生抽象群的第一个主要来源。

抽象群产生的第二个主要来源则是戴德金(R.Dedekind,1831-1916)和克罗内克(L.Kronecker,1823-1891)的有限群及有限交换群的抽象定义以及凯莱(A.Kayley,1821-1895)关于有限抽象群的研究工作。

另外,克莱因(F.Clein,1849-1925)和庞加莱(J-H.Poincare,1854-1912)给出了无限变换群和其他类型的无限群,19世纪70年代,李(M.S.Lie,1842-1899)开始研究连续变换群,并建立了连续群的一般理论,这些工作构成抽象群论的第三个主要来源。

1882-1883年,迪克(W.vondyck,1856-1934)的论文把上述三个主要来源的工作纳入抽象群的概念之中,建立了(抽象)群的定义。

到19世纪80年代,数学家们终于成功地概括出抽象群论的公理体系。

20世纪80年代,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。

它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、代数群等,它们还具有与群结构相联系的其他结构,如拓扑、解析流形、代数簇等,并在结晶学、理论物理、量子化学以及编码学、自动机理论等方面.

线性代数的综合应用

马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面有着广泛的应用。

其中行列式已广泛应用于线性方程组和矩阵理论中线性代数广泛应用于数学的各个分支以及物理、化学和科学技术中。

如:

线性代数在“人口模型”、“,这一点是很清楚的。

下面只举例说明矩阵和线性方程组的一些应用。

线性方程组和二次型中的应用。

大家知道,最重要的线性方程组基本定理(Kronecher-CApelli):

一个线性方程组有解等于其系数矩阵和增广矩阵有相同的秩。

完全体现在矩阵及其秩上。

可以说矩阵及其秩的理论贯穿于线性方程组讨论的始终。

矩阵函数在微分方程组中有重要应用;

矩阵理论在试验设计中有重要应用,其中特别要用到一些特殊的矩阵,如Hadamard矩阵和正交方阵。

线性方程组在气象预报中的应用。

为了做天气和气象预报,有时往往根据诸多因素最后归结为解一个线性方程组。

当然,这种线性方程组在求解时不能手算,而要在电子计算机上进行。

线性方程组在国民经济中的应用。

为了预测经济形势,利用投入产出经济数学模型,也往往归结为求解一个线性方程组。

对于其他工程领域,没有用不上线代的地方。

如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;

石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;

飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:

对稀疏矩阵进行分块处理和进行LU分解;

作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;

知道有限元方法吗?

这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。

知道马尔科夫链吗?

这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列

另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;

大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;

二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中.

下面举几个例子来说明有关线代的应用:

把飞行器的外形分成若干大的部件,每个部件沿着其表面又用三维的细网格划分出许多立方体,这些立方体包括了机身表面以及此表面内外的空气。

对每个立方体列写出空气动力学方程,其中包括了与它相邻的立方体的共同边界变量,这些方程通常都已经简化为线性方程。

对一个飞行器,小立方体的数目可以多达400,000个,而要解的联立方程可能多达2,000,000个。

卫星上用三种可见光和四种红外光进行摄像,对每一个区域,可以获得七张遥感图象。

利用多通道的遥感图可以获取尽可能多的地面信息,因为各种地貌、作物和气象特征可能对不同波段的光敏感。

而在实用上应该寻找每一个地方的主因素,成为一张实用的图象。

每一个象素上有七个数据,形成一个多元的变量数组,在其中合成并求取主因素的问题,就与线性代数中要讨论的特征值问题有关。

4.求解矩阵方程

1.已知

解:

由已知可得

注:

这里用到正交阵的逆等于其转置,计算较为便捷。

解:

.

1.证明:

对实对称阵A,若A2=O,则A=O.

证明(法一):

由AT=A知AAT=A2=O,对特征问题Ax=左乘A得O=A2x=A

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动物植物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1