最新初中数学几何证明经典题.docx

上传人:b****3 文档编号:2290339 上传时间:2022-10-28 格式:DOCX 页数:17 大小:190.01KB
下载 相关 举报
最新初中数学几何证明经典题.docx_第1页
第1页 / 共17页
最新初中数学几何证明经典题.docx_第2页
第2页 / 共17页
最新初中数学几何证明经典题.docx_第3页
第3页 / 共17页
最新初中数学几何证明经典题.docx_第4页
第4页 / 共17页
最新初中数学几何证明经典题.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

最新初中数学几何证明经典题.docx

《最新初中数学几何证明经典题.docx》由会员分享,可在线阅读,更多相关《最新初中数学几何证明经典题.docx(17页珍藏版)》请在冰豆网上搜索。

最新初中数学几何证明经典题.docx

最新初中数学几何证明经典题

初中几何证明题

经典题

(一)

1、已知:

如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.

求证:

CD=GF.(初二)

.如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。

2、已知:

如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

求证:

△PBC是正三角形.(初二)

.如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。

.如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。

3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.

求证:

四边形A2B2C2D2是正方形.(初二)

4、已知:

如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.

求证:

∠DEN=∠F.

 

经典题

(二)

1、已知:

△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.

 

(1)求证:

AH=2OM;

 

(2)若∠BAC=600,求证:

AH=AO.(初二)

2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.

求证:

AP=AQ.(初二)

3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.

求证:

AP=AQ.(初二)

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.

求证:

点P到边AB的距离等于AB的一半.(初二)

经典题(三)

1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

求证:

CE=CF.(初二)

2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.

求证:

AE=AF.(初二)

3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.

求证:

PA=PF.(初二)

4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:

AB=DC,BC=AD.(初三)

 

经典题(四)

1、已知:

△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

求:

∠APB的度数.(初二)

2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.

求证:

∠PAB=∠PCB.(初二)

3、设ABCD为圆内接凸四边形,求证:

AB·CD+AD·BC=AC·BD.(初三)

4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且

AE=CF.求证:

∠DPA=∠DPC.(初二)

经典难题(五)

1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,

求证:

≤L<2.

2、已知:

P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.

 

 

 

 

3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.

经典题

(一)

1.如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。

2..如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。

3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,

连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,

由A2E=A1B1=B1C1=FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和

∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,

可得△B2FC2≌△A2EB2,所以A2B2=B2C2,

又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,

从而可得∠A2B2C2=900,

同理可得其他边垂直且相等,

从而得出四边形A2B2C2D2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典题

(二)

1.

(1)延长AD到F连BF,做OG⊥AF,

又∠F=∠ACB=∠BHD,

可得BH=BF,从而可得HD=DF,

又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM

(2)连接OB,OC,既得∠BOC=1200,

从而可得∠BOM=600,

所以可得OB=2OM=AH=AO,

得证。

3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。

由于,

由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。

又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,

∠AOP=∠AOQ,从而可得AP=AQ。

4.过E,C,F点分别作AB所在直线的高EG,CI,FH。

可得PQ=。

由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。

从而可得PQ==,从而得证。

经典题(三)

1.顺时针旋转△ADE,到△ABG,连接CG.

由于∠ABG=∠ADE=900+450=1350

从而可得B,G,D在一条直线上,可得△AGB≌△CGB。

推出AE=AG=AC=GC,可得△AGC为等边三角形。

∠AGB=300,既得∠EAC=300,从而可得∠AEC=750。

又∠EFC=∠DFA=450+300=750.

可证:

CE=CF。

2.连接BD作CH⊥DE,可得四边形CGDH是正方形。

由AC=CE=2GC=2CH,

可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,

又∠FAE=900+450+150=1500,

从而可知道∠F=150,从而得出AE=AF。

3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。

令AB=Y,BP=X,CE=Z,可得PC=Y-X。

tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,

即Z(Y-X)=X(Y-X),既得X=Z,得出△ABP≌△PEF,

得到PA=PF,得证。

经典难题(四)

1.顺时针旋转△ABP600,连接PQ,则△PBQ是正三角形。

可得△PQC是直角三角形。

所以∠APB=1500。

2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.

可以得出∠ABP=∠ADP=∠AEP,可得:

AEBP共圆(一边所对两角相等)。

可得∠BAP=∠BEP=∠BCP,得证。

3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:

=,即AD•BC=BE•AC,①

又∠ACB=∠DCE,可得△ABC∽△DEC,既得

=,即AB•CD=DE•AC,②

由①+②可得:

AB•CD+AD•BC=AC(BE+DE)=AC·BD,得证。

4.过D作AQ⊥AE,AG⊥CF,由==,可得:

=,由AE=FC。

可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。

经典题(五)

1.

(1)顺时针旋转△BPC600,可得△PBE为等边三角形。

既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上,

即如下图:

可得最小L=;

(2)过P点作BC的平行线交AB,AC与点D,F。

由于∠APD>∠ATP=∠ADP,

推出AD>AP①

又BP+DP>BP②

和PF+FC>PC③

又DF=AF④

由①②③④可得:

最大L<2;

(1)和

(2)既得:

≤L<2。

4、“体验化”消费

自制性手工艺品。

自制饰品其实很简单,工艺一点也不复杂。

近两年来,由于手机的普及,自制的手机挂坠特别受欢迎。

(1)专业知识限制2.顺时针旋转△BPC600,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,

即如下图:

可得最小PA+PB+PC=AF。

300-400元1632%

标题:

手工制作坊2004年3月18日既得AF===

我们熟练的掌握计算机应用,我们可以在网上搜索一些流行因素,还可以把自己小店里的商品拿到网上去卖,为我们小店提供了多种经营方式。

==

创新是时下非常流行的一个词,确实创新能力是相当重要的特别是对我们这种经营时尚饰品的小店,更应该勇于创新。

在这方面我们是很欠缺的,故我们在小店经营的时候会遇到些困难,不过我们会克服困难,努力创新,把我们的小店经营好。

=。

大学生的消费是多种多样,丰富多彩的。

除食品外,很大一部分开支都用于。

服饰,娱乐,小饰品等。

女生都比较偏爱小饰品之类的消费。

女生天性爱美,对小饰品爱不释手,因为饰品所展现的魅力,女人因饰品而妩媚动人,亮丽。

据美国商务部调查资料显示女人占据消费市场最大分额,随社会越发展,物质越丰富,女性的时尚美丽消费也越来越激烈。

因此也为饰品业创造了无限的商机。

据调查统计,有50%的同学曾经购买过DIY饰品,有90%的同学表示若在学校附近开设一家DIY手工艺制品,会去光顾。

我们认为:

我校区的女生就占了80%。

相信开饰品店也是个不错的创业方针。

大学生购买力有限,即决定了要求商品能价廉物美,但更注重的还是在购买过程中对精神文化爱好的追求,满足心理需求。

3.顺时针旋转△ABP900,可得如下图:

既得正方形边长L==。

4.在AB上找一点F,使∠BCF=600,

连接EF,DG,既得△BGC为等边三角形,

可得∠DCF=100,∠FCE=200,推出△ABE≌△ACF,

得到BE=CF,FG=GE。

推出:

△FGE为等边三角形,可得∠AFE=800,

既得:

∠DFG=400①

又BD=BC=BG,既得∠BGD=800,既得∠DGF=400②

推得:

DF=DG,得到:

△DFE≌△DGE,

从而推得:

∠FED=∠BED=300。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1