高中化学选修4知识点总结.doc

上传人:b****1 文档编号:228875 上传时间:2022-10-07 格式:DOC 页数:7 大小:29.50KB
下载 相关 举报
高中化学选修4知识点总结.doc_第1页
第1页 / 共7页
高中化学选修4知识点总结.doc_第2页
第2页 / 共7页
高中化学选修4知识点总结.doc_第3页
第3页 / 共7页
高中化学选修4知识点总结.doc_第4页
第4页 / 共7页
高中化学选修4知识点总结.doc_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

高中化学选修4知识点总结.doc

《高中化学选修4知识点总结.doc》由会员分享,可在线阅读,更多相关《高中化学选修4知识点总结.doc(7页珍藏版)》请在冰豆网上搜索。

高中化学选修4知识点总结.doc

高中化学选修4知识点总结

第1章、化学反应与能量转化

   一、化学反应的热效应

  1、化学反应的反应热

重点:

(1)反应热的概念:

  当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。

用符号Q表示。

  

(2)反应热与吸热反应、放热反应的关系。

  Q>0时,反应为吸热反应;Q<0时,反应为放热反应。

  (3)反应热的测定

  测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热。

 2、化学反应的焓变

 重点:

 

(1)反应焓变

  物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ•mol-1。

  反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。

  

(2)反应焓变ΔH与反应热Q的关系。

  对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:

Qp=ΔH=H(反应产物)-H(反应物)。

  (3)反应焓变与吸热反应,放热反应的关系:

  ΔH>0,反应吸收能量,为吸热反应。

  ΔH<0,反应释放能量,为放热反应。

 难点:

反应焓变与热化学方程式:

  把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:

H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ•mol-1

  书写热化学方程式应注意以下几点:

  ①化学式后面要注明物质的聚集状态:

固态(s)、液态(l)、气态(g)、溶液(aq)。

  ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J•mol-1或kJ•mol-1,且ΔH后注明反应温度。

  ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。

  3、反应焓变的计算

重点难点:

(1)盖斯定律

  对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。

  

(2)利用盖斯定律进行反应焓变的计算。

  常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。

  (3)根据标准摩尔生成焓,ΔfHmθ计算反应焓变ΔH。

    二、电能转化为化学能——电解

 重点:

 电解的原理

  

(1)电解的概念:

  在直流电作用下,电解质在两上电极上分别发生氧化反应和还原反应的过程叫做电解。

电能转化为化学能的装置叫做电解池。

  

(2)电极反应:

以电解熔融的NaCl为例:

  阳极:

与电源正极相连的电极称为阳极,阳极发生氧化反应:

2Cl-→Cl2↑+2e-。

  阴极:

与电源负极相连的电极称为阴极,阴极发生还原反应:

Na++e-→Na。

总方程式:

2NaCl(熔)=2Na+Cl2↑

难点:

电解原理的应用

  

(1)电解食盐水制备烧碱、氯气和氢气。

  阳极:

2Cl-=Cl2+2e-

  阴极:

2H++e-=H2↑

  总反应:

2NaCl+2H2O=2NaOH+H2↑+Cl2↑

  

(2)铜的电解精炼。

  粗铜(含Zn、Ni、Fe、Ag、Au、Pt)为阳极,精铜为阴极,CuSO4溶液为电解质溶液。

  阳极反应:

Cu=Cu2++2e-,还发生几个副反应

  Zn=Zn2++2e-;Ni→Ni2++2e-

  Fe=Fe2++2e-

  Au、Ag、Pt等不反应,沉积在电解池底部形成阳极泥。

  阴极反应:

Cu2++2e-=Cu

  (3)电镀:

以铁表面镀铜为例

  待镀金属Fe为阴极,镀层金属Cu为阳极,CuSO4溶液为电解质溶液。

  阳极反应:

Cu=Cu2++2e-

  阴极反应:

Cu2++2e-=Cu

  三、化学能转化为电能——电池

重点:

原电池的工作原理

  

(1)原电池的概念:

  把化学能转变为电能的装置称为原电池。

  

(2)Cu-Zn原电池的工作原理:

  (3)原电池的电能

若两种金属做电极,活泼金属为负极,不活泼金属为正极;若一种金属和一种非金属做电极,金属为负极,非金属为正极。

难点:

1、化学电源

  

(1)锌锰干电池

  负极反应:

Zn→Zn2++2e-;

  正极反应:

2NH4++2e-→2NH3+H2;

  

(2)铅蓄电池

  负极反应:

Pb+SO42-PbSO4+2e-

  正极反应:

PbO2+4H++SO42-+2e-PbSO4+2H2O

  放电时总反应:

Pb+PbO2+2H2SO4=2PbSO4+2H2O。

  充电时总反应:

2PbSO4+2H2O=Pb+PbO2+2H2SO4。

  (3)氢氧燃料电池

  负极反应:

2H2+4OH-→4H2O+4e-

  正极反应:

O2+2H2O+4e-→4OH-

  电池总反应:

2H2+O2=2H2O

了解:

金属的腐蚀与防护

  

(1)金属腐蚀

  金属表面与周围物质发生化学反应或因电化学作用而遭到破坏的过程称为金属腐蚀。

  

(2)金属腐蚀的电化学原理。

  (3)金属的防护

 一、化学反应的方向

 重点:

 1、反应焓变与反应方向

  放热反应多数能自发进行,即ΔH<0的反应大多能自发进行。

有些吸热反应也能自发进行。

如NH4HCO3与CH3COOH的反应。

有些吸热反应室温下不能进行,但在较高温度下能自发进行,如CaCO3高温下分解生成CaO、CO2。

  2、反应熵变与反应方向

  熵是描述体系混乱度的概念,熵值越大,体系混乱度越大。

反应的熵变ΔS为反应产物总熵与反应物总熵之差。

产生气体的反应为熵增加反应,熵增加有利于反应的自发进行。

  3、焓变与熵变对反应方向的共同影响

  ΔH-TΔS<0反应能自发进行。

  ΔH-TΔS=0反应达到平衡状态。

  ΔH-TΔS>0反应不能自发进行。

 在温度、压强一定的条件下,自发反应总是向ΔH-TΔS<0的方向进行,直至平衡状态。

  二、化学反应的限度

重点:

1、化学平衡常数

  

(1)对达到平衡的可逆反应,生成物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比为一常数,该常数称为化学平衡常数,用符号K表示。

  

(2)平衡常数K的大小反映了化学反应可能进行的程度(即反应限度),平衡常数越大,说明反应可以进行得越完全。

  (3)平衡常数表达式与化学方程式的书写方式有关。

对于给定的可逆反应,正逆反应的平衡常数互为倒数。

  (4)借助平衡常数,可以判断反应是否到平衡状态:

当反应的浓度商Qc与平衡常数Kc相等时,说明反应达到平衡状态。

  2、反应的平衡转化率

  

(1)平衡转化率是用转化的反应物的浓度与该反应物初始浓度的比值来表示。

如反应物A的平衡转化率的表达式为:

  α(A)=

  

(2)平衡正向移动不一定使反应物的平衡转化率提高。

提高一种反应物的浓度,可使另一反应物的平衡转化率提高。

  (3)平衡常数与反应物的平衡转化率之间可以相互计算。

难点;

反应条件对化学平衡的影响

  

(1)温度的影响

  升高温度使化学平衡向吸热方向移动;降低温度使化学平衡向放热方向移动。

温度对化学平衡的影响是通过改变平衡常数实现的。

  

(2)浓度的影响

  增大生成物浓度或减小反应物浓度,平衡向逆反应方向移动;增大反应物浓度或减小生成物浓度,平衡向正反应方向移动。

  温度一定时,改变浓度能引起平衡移动,但平衡常数不变。

化工生产中,常通过增加某一价廉易得的反应物浓度,来提高另一昂贵的反应物的转化率。

  (3)压强的影响

  ΔVg=0的反应,改变压强,化学平衡状态不变。

  ΔVg≠0的反应,增大压强,化学平衡向气态物质体积减小的方向移动。

  (4)勒夏特列原理

  由温度、浓度、压强对平衡移动的影响可得出勒夏特列原理:

如果改变影响平衡的一个条件(浓度、压强、温度等)平衡向能够减弱这种改变的方向移动。

           一、化学反应的速率

  1、化学反应是怎样进行的

  

(1)基元反应:

能够一步完成的反应称为基元反应,大多数化学反应都是分几步完成的。

  

(2)反应历程:

平时写的化学方程式是由几个基元反应组成的总反应。

总反应中用基元反应构成的反应序列称为反应历程,又称反应机理。

  (3)不同反应的反应历程不同。

同一反应在不同条件下的反应历程也可能不同,反应历程的差别又造成了反应速率的不同。

重点:

化学反应速率

  

(1)概念:

  单位时间内反应物的减小量或生成物的增加量可以表示反应的快慢,即反应的速率,用符号v表示。

  

(2)表达式:

  (3)特点

  对某一具体反应,用不同物质表示化学反应速率时所得的数值可能不同,但各物质表示的化学反应速率之比等于化学方程式中各物质的系数之比。

 难点:

1、浓度对反应速率的影响

  

(1)反应速率常数(K)

  反应速率常数(K)表示单位浓度下的化学反应速率,通常,反应速率常数越大,反应进行得越快。

反应速率常数与浓度无关,受温度、催化剂、固体表面性质等因素的影响。

  

(2)浓度对反应速率的影响

  增大反应物浓度,正反应速率增大,减小反应物浓度,正反应速率减小。

  增大生成物浓度,逆反应速率增大,减小生成物浓度,逆反应速率减小。

  (3)压强对反应速率的影响

  压强只影响气体,对只涉及固体、液体的反应,压强的改变对反应速率几乎无影响。

 2、温度对化学反应速率的影响

  活化能Ea。

  活化能Ea是活化分子的平均能量与反应物分子平均能量之差。

不同反应的活化能不同,有的相差很大。

活化能Ea值越大,改变温度对反应速率的影响越大。

3、催化剂对化学反应速率的影响

  

(1)催化剂对化学反应速率影响的规律:

  催化剂大多能加快反应速率,原因是催化剂能通过参加反应,改变反应历程,降低反应的活化能来有效提高反应速率。

  

(2)催化剂的特点:

  催化剂能加快反应速率而在反应前后本身的质量和化学性质不变。

  催化剂具有选择性。

  催化剂不能改变化学反应的平衡常数,不引起化学平衡的移动,不能改变平衡转化率。

  二、化学反应条件的优化——工业合成氨

  1、合成氨反应的限度

  合成氨反应是一个放热反应,同时也是气体物质的量减小的熵减反应,故降低温度、增大压强将有利于化学平衡向生成氨的方向移动。

  2、合成氨反应的速率

  

(1)高压既有利于平衡向生成氨的方向移动,又使反应速率加快,但高压对设备的要求也高,故压强不能特别大。

  

(2)反应过程中将氨从混合气中分离出去,能保持较高的反应速率。

  (3)温度越高,反应速率进行得越快,但温度过高,平衡向氨分解的方向移动,不利于氨的合成。

  (4)加入催化剂能大幅度加快反应速率。

  3、合成氨的适宜条件

    第3章、物质在水溶液中的行为

  一、水溶液

 重点:

 1、水的电离

  H2OH++OH-

  水的离子积常数KW=c(H+)c(OH-),25℃时,KW=1.0×10-14mol2·L-2。

温度升高,有利于水的电离,KW增大。

  2、溶液的酸碱度

  室温下,中性溶液:

c(H+)=c(OH-)=1.0×10-7mol·L-1,pH=7

  酸性溶液:

c(H+)>c(OH-),c(H+)>1.0×10-7mol·L-1,pH<7

  碱性溶液:

c(H+)<c(OH-),c(OH-)>1.0×10-7mol·L-1,pH>7

  3、电解质在水溶液中的存在形态

  

(1)强电解质

  强电解质是在稀的水溶液中完全电离的电解质,强电解质在溶液中以离子形式存在,主要包括强酸、强碱

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1