七年级数学知识总结Word文档下载推荐.docx

上传人:b****7 文档编号:22625282 上传时间:2023-02-04 格式:DOCX 页数:18 大小:117.86KB
下载 相关 举报
七年级数学知识总结Word文档下载推荐.docx_第1页
第1页 / 共18页
七年级数学知识总结Word文档下载推荐.docx_第2页
第2页 / 共18页
七年级数学知识总结Word文档下载推荐.docx_第3页
第3页 / 共18页
七年级数学知识总结Word文档下载推荐.docx_第4页
第4页 / 共18页
七年级数学知识总结Word文档下载推荐.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

七年级数学知识总结Word文档下载推荐.docx

《七年级数学知识总结Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《七年级数学知识总结Word文档下载推荐.docx(18页珍藏版)》请在冰豆网上搜索。

七年级数学知识总结Word文档下载推荐.docx

|a|·

|b|=|a·

b|,

.

5.有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数>0,小数-大数<0.

6.互为倒数:

乘积为1的两个数互为倒数;

0没有倒数;

若a≠0,那么

的倒数是

倒数是本身的数是±

1;

若ab=1⇔a、b互为倒数;

若ab=-1⇔a、b互为负倒数.

7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:

a+b=b+a;

(2)加法的结合律:

(a+b)+c=a+(b+c).

9.有理数减法法则:

减去一个数,等于加上这个数的相反数;

即a-b=a+(-b).

10有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;

各个因式都不为零,积的符号由负因式的个数决定.

11有理数乘法的运算律:

(1)乘法的交换律:

ab=ba;

(2)乘法的结合律:

(ab)c=a(bc);

(3)乘法的分配律:

a(b+c)=ab+ac.

12.有理数除法法则:

除以一个数等于乘以这个数的倒数;

零不能做除数,

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;

负数的偶次幂是正数;

当n为正奇数时:

(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:

(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是重要的非负数,即a2≥0;

若a2+|b|=0⇔a=0,b=0;

(4)据规律

底数的小数点移动一位,平方数的小数点移动二位.

15.科学记数法:

把一个大于10的数记成a×

10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:

一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:

从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:

先乘方,后乘除,最后加减;

怎样算简单,怎样算准确,是数学计算的最重要的原则.

19.特殊值法:

是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

第二章整式的加减

1.单项式:

在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:

单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:

几个单项式的和叫多项式.

4.多项式的项数与次数:

多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

多项式里,次数最高项的次数叫多项式的次数;

(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

5.整式:

凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

整式分类为:

.

6.同类项:

所含字母相同,并且相同字母的指数也相同的单项式是同类项.

7.合并同类项法则:

系数相加,字母与字母的指数不变.

8.去(添)括号法则:

去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;

若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:

整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

10.多项式的升幂和降幂排列:

把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:

多项式计算的最后结果一般应该进行升幂(或降幂)排列.

第三章立体图形与平面图形

长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

长方形、正方形、三角形、圆等都是平面图形。

许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

3.1.2点、线、面、体

几何体也简称体。

长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

包围着体的是面。

面有平的面和曲的面两种。

面和面相交的第三章图形认识

3.1多姿多彩的图形

现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。

初步

地方形成线。

线和线相交的地方是点。

几何图形都是由点、线、面、体组成的,点是构成图形的

两点确定一条直线。

点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

类似的还有线段的三等分点、四等分点等。

直线桑一点和它一旁的部分叫做射线。

两点的所有连线中,线段最短。

简单说成:

两点之间,线段最短。

基本元素。

3.2直线、射线、线段

经过两点有一条直线,并且只有一条直线。

3.3角的度量

角也是一种基本的几何图形。

度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1;

把1度的角60等分,每份叫做1分的角,记作1;

把1分的角60等分,每份叫做1秒的角,记作1。

3.4角的比较与运算

3.4.1角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

类似的,还有叫的三等分线。

3.4.2余角和补角

如果两个角的和等于90(直角),就说这两个角互为余角。

如果两个角的和等于180(平角),就说这两个角互为补角。

等角的补角相等。

等角的余角相等。

本章知识结构图

第四章一元一次方程

1.等式与等量:

用“=”号连接而成的式子叫等式.注意:

“等量就能代入”!

2.等式的性质:

等式性质1:

等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:

等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:

含未知数的等式,叫方程.

4.方程的解:

使等式左右两边相等的未知数的值叫方程的解;

“方程的解就能代入”!

5.移项:

改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:

只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:

ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程的最简形式:

ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程解法的一般步骤:

整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

10.列一元一次方程解应用题:

(1)读题分析法:

…………多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:

“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法:

…………多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

11.列方程解应用题的常用公式:

(1)行程问题:

距离=速度·

时间

(2)工程问题:

工作量=工效·

工时

(3)比率问题:

部分=全体·

比率

(4)顺逆流问题:

顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:

售价=定价·

折·

,利润=售价-成本,

(6)周长、面积、体积问题:

C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,

S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=

πR2h.

第五章相交线与平行线

5.1相交线

5.1.1相交线

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

5.1.2

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:

a⊥b,AB⊥CD。

画已知直线的垂线有无数条。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线

5.2.1平行线

在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:

a∥b。

在同一平面内两条直线的关系只有两种:

相交或平行。

平行公理:

经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

5.2.2直线平行的条件

两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。

两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。

两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。

判定两条直线平行的方法:

方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

同位角相等,两直线平行。

方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

内错角相等,两直线平行。

方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

同旁内角互补,两直线平行。

5.3平行线的性质

平行线具有性质:

性质1两条平行线被第三条直线所截,同位角相等。

两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。

两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。

两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。

5.4平移

⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

图形的这种移动,叫做平移变换,简称平移。

 

第六章平面直角坐标系

6.1平面直角坐标系

6.1.1有序数对

有顺序的两个数a与b组成的数对,叫做有序数对。

6.1.2平面直角坐标系

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴取2向上方向为正方向;

两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。

坐标轴上的点不属于任何象限。

6.2坐标方法的简单应用

6.2.1用坐标表示地理位置

利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:

⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

6.2.2用坐标表示平移

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));

将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;

如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章三角形

7.1与三角形有关的线段

7.1.1三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。

三角形两边的和大于第三边。

7.1.2三角形的高、中线和角平分线

7.1.3三角形的稳定性

三角形具有稳定性。

7.2与三角形有关的角

7.2.1三角形的内角

三角形的内角和等于180。

7.2.2三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角。

7.3多边形及其内角和

7.3.1多边形

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形。

7.3.2多边形的内角和

n边形的内角和公式:

180(n-2)

多边形的外角和等于360。

7.4课题学习镶嵌

第八章二元一次方程组

1.二元一次方程:

含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:

一般说二元一次方程有无数个解.

2.二元一次方程组:

两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:

使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:

一般说二元一次方程组只有唯一解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;

(2)加减消元法;

判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

第九章一元一次不等式(组)

1.不等式:

用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:

不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:

不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:

不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:

能使不等式成立的未知数的值,叫做这个不等式的解;

不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:

只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;

它的标准形式是ax+b>0或ax+b<0,(a≠0).

5.一元一次不等式的解法:

一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;

在数轴上表示不等式的解集时,要注意空圈和实点.

6.一元一次不等式组:

含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;

ab>0⇔

ab<0⇔

ab=0⇔a=0或b=0;

⇔a=m.

7.一元一次不等式组的解集与解法:

所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;

解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.

8.一元一次不等式组的解集的四种类型:

设a>b

9.几个重要的判断:

第十章数据的收集与整理

1.收集数据:

全面调查和抽样调查

考察全体对象的调查属于全面调查。

抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。

统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。

调查时,可用不同的方法获得数据。

除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。

2.概念:

总体,个体,样本,样本容量。

3.数据的代表:

平均数,众数,中位数

4.统计图:

条形图,扇形图,折线图,直方图

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1