青岛版五四制小学数学总复习基础知识.docx
《青岛版五四制小学数学总复习基础知识.docx》由会员分享,可在线阅读,更多相关《青岛版五四制小学数学总复习基础知识.docx(20页珍藏版)》请在冰豆网上搜索。
青岛版五四制小学数学总复习基础知识
小学数学总复习基础知识
第一部份 数与代数
(一)数的认识
整数【正数、0、负数】
1、一个物体也没有,用0表示。
0和1、2、3……都是自然数。
自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
7、通常情况下,盈利用正数表示,亏损用负数表示。
8、通常情况下,上车人数用正数表示,下车人数用负数表示。
9、通常情况下,收入用正数表示,支出用负数表示。
10、通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
1、分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
4、小数的性质:
小数的末尾添上“0”或去掉“0”,小数的大小不变。
5、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:
先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:
(1)先要弄清保留几位小数;
(2)根据需要确定看哪一位上的数;
(3)用“四舍五入”的方法求得结果。
9、多位数的读法法则 :
1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
10、整数和小数的数位顺序表:
整数部分
小数点
小数部分
…
亿 级
万 级
个 级
数位
…
千亿位
百亿位
十亿位
亿
位
千万位
百万位
十万位
万
位
千
位
百
位
十
位
个
位
·
十分位
百分位
千分位
万分位
…
计数单位
…
千亿
百亿
十亿
亿
千万
百万
十万
万
千
百
十
个
(一)
十分之一
百分之一
千分之一
万分之一
…
分数【真分数、假分数】
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。
即:
a÷b=(b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。
真分数小于1。
6、分子大于或等于分母的分数叫做假分数。
假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:
分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
1、表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫百分率或
百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点
相同点
分 数
可以表示具体数量,可以有单位名称
表示两个数之间的关系
百分数
不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
=0.5=50%
≈0.333=33.3%
≈0.667=66.7%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
≈0.167=16.7%
≈0.833=83.3%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.3=30%
=0.7=70%
=0.9=90%
=0.05=5%
=0.15=15%
=0.35=35%
=0.45=45%
=0.55=55%
=0.65=65%
=0.85=85%
=0.95=95%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
5、出勤率表示出勤人数占总人数的百分之几。
合格率表示合格件数占总件数的百分之几。
成活率表示成活棵数占总棵数的百分之几。
6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
7、多的÷“1”=多百分之几 少的÷“1”=少百分之几
8、应得利息是税前利息,实得利息是税后利息。
9、利息=本金×利率×时间
10、应得利息-利息税=实得利息
11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
12、原价×折扣=现价 现价÷原价=折扣 现价÷折扣=原价
13、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
3、一个数最小的因数是1,最大的因数是它本身。
一个数因数的个数是有限的。
4、5的倍数:
个位上的数是5或0。
2的倍数:
个位上的数是2、4、6、8或0。
2的倍数都是双数。
3的倍数:
各位上数的和一定是3的倍数。
5、是2的倍数的数叫做偶数。
不是2的倍数的数叫做奇数。
6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
8、在1—20这些数中:
(1既不是素数,也不是合数)
奇数:
1、3、5、7、9、11、13、15、17、19。
偶数:
2、4、6、8、10、12、14、16、18、20。
素数:
2、3、5、7、11、13、17、19。
(共8个,和为77。
)
合数:
4、6、8、9、10、12、14、15、16、18、20。
(共11个,和为132。
)
9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
10、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。
11、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。
(二)数的运算
计算法则【整数、小数、分数】
1、计算整数加、减法要把相同数位对齐,从低位算起。
2、计算小数加、减法要把小数点对齐,从低位算起。
3、小数乘法:
(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(2)注意:
在积里点小数点时,位数不够的,要在前面用0补足。
4、小数除法:
(1)商的小数点要和被除数的小数点对齐;
(2)有余数时,要在后面添0,继续往下除;
(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。
(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。
(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。
5、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……
6、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……
7、分数加、减法:
(1)同分母分数相加减,把分子相加减,分母不变。
(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。
8、分数大小的比较:
(1)同分母分数相比较,分子大的大,分子小的小。
(2)异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
9、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
10、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
四则运算关系
加法
一个加数=和-另一个加数
减法
被减数=差+减数 减数=被减数-差
乘法
一个因数=积÷另一个因数
除法
被除数=商×除数 除数=被除数÷商
两个规律
1、除法的商不变规律:
被除数和除数同时乘或除以相同的数(0除外),商不变。
2、乘法的积不变规律:
如果一个因数乘几,另一个因数则除以几,那么它们的积不变。
简便计算
1、运算定律:
运算定律
用字母表示
加法交换律
a+b=b+a
加法结合律
(a+b)+c=a+(b+c)
乘法交换律
a×b=b×a
乘法结合律
(a×b)×c=a×(b×c)
乘法分配律
(a+b)×c=a×c+b×c
减法运算规律
a-b-c=a-(b+c)
除法运算规律
a÷b÷c=a÷(b×c)
2、乘、除法的互化。
(小技巧:
符号是相反的;两个数相乘得“1”。
)
(1)A÷0.1=A×10
(2)A×0.1=A÷10
(7)A÷0.01=A×100;
(8)A×0.01=A÷100
(3)A÷0.2=A×5
(4)A×0.2=A÷5
(9)A÷0.25=A×4
(10)A×0.25=A÷4
(5)A÷0.5=A×2
(6)A×0.5=A÷2
(11)A÷0.125=A×8
(12)A×0.125=A÷8
3、求近似数的方法。
(1)四舍五入法。
(2)进一法。
(3)去尾法。
4、积与因数、商与被除数的大小比较:
第2个因数>1,积>第1个因数;
第2个因数=1,积=第1个因数;
第2个因数<1,积<第1个因数。
除数>1,商<被除数;
除数=1,商=被除数;
除数<1,商>被除数;
数量关系
单价×数量=总价
总价÷数量=单价
总价÷单价=数量
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
速度×时间=路程
路程÷时间=速度
路程÷速度=时间
速度和×相遇时间=路程
路程÷相遇时间=速度和
路程÷速度和=相遇时间
(三)式与方程
用字母表示数
1、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。
在省略数字与字母之间的乘号时,要把数字写在字母的前面。
2、2a与a2意义不同: