青岛版五四制小学数学总复习基础知识.docx

上传人:b****2 文档编号:2209775 上传时间:2022-10-27 格式:DOCX 页数:20 大小:534.88KB
下载 相关 举报
青岛版五四制小学数学总复习基础知识.docx_第1页
第1页 / 共20页
青岛版五四制小学数学总复习基础知识.docx_第2页
第2页 / 共20页
青岛版五四制小学数学总复习基础知识.docx_第3页
第3页 / 共20页
青岛版五四制小学数学总复习基础知识.docx_第4页
第4页 / 共20页
青岛版五四制小学数学总复习基础知识.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

青岛版五四制小学数学总复习基础知识.docx

《青岛版五四制小学数学总复习基础知识.docx》由会员分享,可在线阅读,更多相关《青岛版五四制小学数学总复习基础知识.docx(20页珍藏版)》请在冰豆网上搜索。

青岛版五四制小学数学总复习基础知识.docx

青岛版五四制小学数学总复习基础知识

小学数学总复习基础知识

第一部份  数与代数

(一)数的认识

整数【正数、0、负数】

1、一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

2、最小的一位数是1,最小的自然数是0。

3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

4、像+4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

5、0既不是正数,也不是负数。

正数都大于0,负数都小于0。

6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

7、通常情况下,盈利用正数表示,亏损用负数表示。

8、通常情况下,上车人数用正数表示,下车人数用负数表示。

9、通常情况下,收入用正数表示,支出用负数表示。

10、通常情况下,上升用正数表示,下降用负数表示。

小数【有限小数、无限小数】

1、分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

3、每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

4、小数的性质:

小数的末尾添上“0”或去掉“0”,小数的大小不变。

5、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

6、比较小数大小的一般方法:

先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

8、求小数近似数的一般方法:

(1)先要弄清保留几位小数;

(2)根据需要确定看哪一位上的数;

(3)用“四舍五入”的方法求得结果。

9、多位数的读法法则 :

1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

10、整数和小数的数位顺序表:

  

 

整数部分

小数点

小数部分

亿  级

万  级

个  级

数位

千亿位

百亿位

十亿位

亿

 

千万位

百万位

十万位

 

 

 

 

 

·

十分位

百分位

千分位

万分位

计数单位

千亿

百亿

十亿

亿

千万

百万

十万

(一)

十分之一

百分之一

千分之一

万分之一

分数【真分数、假分数】

1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数,是这个分数的分数单位。

2、两个数相除,它们的商可以用分数表示。

即:

a÷b=(b≠0)

3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。

4、分数可以分为真分数和假分数。

5、分子小于分母的分数叫做真分数。

真分数小于1。

6、分子大于或等于分母的分数叫做假分数。

假分数大于或等于1。

7、分子和分母只有公因数1的分数叫做最简分数。

8、分数的基本性质:

分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。

百分数【税率、利息、折扣、成数】

1、表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫百分率或

百分比,百分数通常用“%”表示。

2、分数与百分数比较:

 

不同点

相同点

分 数

可以表示具体数量,可以有单位名称

表示两个数之间的关系

百分数

不可以表示具体数量,不可以有单位名称

 

3、分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

4、熟记常用三数的互化。

=0.5=50%

≈0.333=33.3%

≈0.667=66.7%

=0.25=25%

=0.75=75%

=0.2=20%

=0.4=40%

=0.6=60%

=0.8=80%

≈0.167=16.7%

≈0.833=83.3%

=0.125=12.5%

=0.375=37.5%

=0.625=62.5%

=0.875=87.5%

=0.1=10%

=0.3=30%

=0.7=70%

=0.9=90%

=0.05=5%

=0.15=15%

=0.35=35%

=0.45=45%

=0.55=55%

=0.65=65%

=0.85=85%

=0.95=95%

=0.04=4%

=0.025=2.5%

=0.02=2%

=0.01=1%

 

5、出勤率表示出勤人数占总人数的百分之几。

  合格率表示合格件数占总件数的百分之几。

  成活率表示成活棵数占总棵数的百分之几。

6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

7、多的÷“1”=多百分之几      少的÷“1”=少百分之几    

8、应得利息是税前利息,实得利息是税后利息。

9、利息=本金×利率×时间

10、应得利息-利息税=实得利息

11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。

12、原价×折扣=现价     现价÷原价=折扣     现价÷折扣=原价

13、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。

因数与倍数【素数、合数、奇数、偶数】

1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。

2、一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

3、一个数最小的因数是1,最大的因数是它本身。

一个数因数的个数是有限的。

4、5的倍数:

个位上的数是5或0。

  2的倍数:

个位上的数是2、4、6、8或0。

2的倍数都是双数。

  3的倍数:

各位上数的和一定是3的倍数。

5、是2的倍数的数叫做偶数。

不是2的倍数的数叫做奇数。

6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。

7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。

8、在1—20这些数中:

 (1既不是素数,也不是合数)

  奇数:

1、3、5、7、9、11、13、15、17、19。

  偶数:

2、4、6、8、10、12、14、16、18、20。

  素数:

2、3、5、7、11、13、17、19。

(共8个,和为77。

  合数:

4、6、8、9、10、12、14、15、16、18、20。

(共11个,和为132。

9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。

10、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。

11、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。

(二)数的运算

计算法则【整数、小数、分数】

1、计算整数加、减法要把相同数位对齐,从低位算起。

2、计算小数加、减法要把小数点对齐,从低位算起。

3、小数乘法:

(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(2)注意:

在积里点小数点时,位数不够的,要在前面用0补足。

4、小数除法:

(1)商的小数点要和被除数的小数点对齐;

(2)有余数时,要在后面添0,继续往下除;

(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

5、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……

6、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……

7、分数加、减法:

(1)同分母分数相加减,把分子相加减,分母不变。

(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。

8、分数大小的比较:

(1)同分母分数相比较,分子大的大,分子小的小。

(2)异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

9、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

10、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

 

四则运算关系

 加法

一个加数=和-另一个加数

减法

被减数=差+减数     减数=被减数-差

乘法

一个因数=积÷另一个因数

除法

被除数=商×除数    除数=被除数÷商

 两个规律

1、除法的商不变规律:

被除数和除数同时乘或除以相同的数(0除外),商不变。

2、乘法的积不变规律:

如果一个因数乘几,另一个因数则除以几,那么它们的积不变。

 简便计算

1、运算定律:

运算定律

用字母表示

加法交换律

a+b=b+a

加法结合律

(a+b)+c=a+(b+c)

乘法交换律

a×b=b×a

乘法结合律

(a×b)×c=a×(b×c)

乘法分配律

(a+b)×c=a×c+b×c

减法运算规律

a-b-c=a-(b+c)

除法运算规律

a÷b÷c=a÷(b×c)

 2、乘、除法的互化。

(小技巧:

符号是相反的;两个数相乘得“1”。

(1)A÷0.1=A×10

(2)A×0.1=A÷10

(7)A÷0.01=A×100; 

(8)A×0.01=A÷100

(3)A÷0.2=A×5

(4)A×0.2=A÷5

(9)A÷0.25=A×4

(10)A×0.25=A÷4

(5)A÷0.5=A×2

(6)A×0.5=A÷2

(11)A÷0.125=A×8

(12)A×0.125=A÷8

 3、求近似数的方法。

(1)四舍五入法。

  

(2)进一法。

  (3)去尾法。

4、积与因数、商与被除数的大小比较:

 第2个因数>1,积>第1个因数;

第2个因数=1,积=第1个因数;

第2个因数<1,积<第1个因数。

除数>1,商<被除数;

除数=1,商=被除数;

除数<1,商>被除数;

 数量关系

单价×数量=总价

总价÷数量=单价

总价÷单价=数量

工作效率×工作时间=工作总量

工作总量÷工作时间=工作效率

工作总量÷工作效率=工作时间

速度×时间=路程

路程÷时间=速度

路程÷速度=时间

速度和×相遇时间=路程

路程÷相遇时间=速度和

路程÷速度和=相遇时间

 (三)式与方程

用字母表示数

1、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。

在省略数字与字母之间的乘号时,要把数字写在字母的前面。

2、2a与a2意义不同:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 其它语言学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1