电子式里程表英文资料Word文件下载.docx
《电子式里程表英文资料Word文件下载.docx》由会员分享,可在线阅读,更多相关《电子式里程表英文资料Word文件下载.docx(20页珍藏版)》请在冰豆网上搜索。
1Introduction...............................................................1
2Requirements..............................................................1
3CurrentAutomationinInteractiveProvers.......................................4
4Techniques...............................................................5
4.1ProofSearch...........................................................6
4.1.1LogicalSystem.....................................................6
4.1.2IntroRules.........................................................6
4.2Equality...............................................................8
4.2.1Rewriting..........................................................8
4.2.2ConditionalSimplification............................................9
4.2.3Completion.......................................................10
4.2.4DynamicCompletion....................................................11
4.2.5EquationalUnification...................................................12
5InterfaceandIntegration......................................................12
6Assessment...............................................................13
6.1Assessmentwrt.Requirements...............................................13
6.2Completeness.............................................................14
6.3Efficiency.............................................................14
6.4InPractice.............................................................15
7Alternative................................................................16
8Conclusion................................................................19
1Introduction
Automationcanbekeytosuccessfulmechanisation.Insomesituations,mechanisationisfeasiblewithoutautomation.Indeed,inhighlyabstractmathematicalareas,mostmechanisedreasoningconsistsoftheuserspellingoutcomplicatedargumentswhicharefarbeyondthosewhichcancurrentlybetackledbyautomation.Inthissetting,automation,ifitisusedatall,isdirectedateasilysolvable,tightlydefinedsubproblems.AtypicalexampleofsuchamechanisationisourformalisationofRamsey'
sTheorem[Rid04].Ontheotherhand,automationcanbefruitfullyappliedinverificationstyleproofs,wherethereasoningisrelativelyrestricted,butthesheerlevelofdetailmakesanon-automatedmechanisationinfeasible.
ManymanyearshavebeenspentdevelopingfullyautomaticsystemssuchasVampire[VR]andOtter[McC].Itwouldbefoolishtoimaginethatwecouldcompetewithsuchsystems.Theirperformanceiswaybeyondthatofsystemscurrentlyimplementedininteractivetheoremprovers.Projectsareunderway[MP04]tolinksuchsystemstointeractivetheoremprovers.Thisisextremelyvaluablework:
ifoneknowsthatafirstorderstatementisprovable,thenoneshouldprobablyexpectthatthemachinecanprovideaproof.
Inthissection,weoutlinesometechniqueswehaveappliedinvariouscasestudies.Naturallywedonotseektosolvetheproblemofautomatedreasoningonceandforall.Ratherwefocusontheproblemsthattypicallyariseinthecasestudieswehavebeeninvolvedwith.Westartbyoutliningthefunctionalitywerequireoftheautomatedengine.Wethendescribethetechniquesweapplied,andhowtheywereintegrated.Weevaluatetheresultingenginequalitativelyintermsofourrequirements,andquantitativelywithrespecttoasizablecasestudy.Fewofthesetechniquesarenovel,rather,weseektocombineexistingtechniquesinasuitablefashion.
TheseproceduresweredevelopedintheHOLLighttheoremprover,whichwefoundtobeanexcellentvehicleforprototypingdifferentapproaches.
2Requirements
Whatdowerequireofourautomation?
Letusdistinguishbetweenautomationforfullyautomaticuse,andautomationforinteractiveuse,therequirementsforeachbeingconsiderablydifferent.
Perhapsunexpectedly,failureoftheautomatedproofengineisthenorm,isthesensethatwheninteractivelydevelopingcomplexproofswespendmostofourtimeonobligationsthatare"
almost"
provable.Thuswewouldliketheprovertogiveusexcellentfeedbackastowhyobligationscouldnotbedischarged.[Sym98]
Thisquoteemphasizesanimportantdifferencebetweenautomaticandinteractiveproof.Inautomaticproof,onetypicallyknowsthatthegoalisprovable(oratleast,suspectsverystrongly,andispreparedtowaitaconsiderableamountoftimebeforeterminatingaproofsearch).Indeed,automaticproversarejudgedonhowmanyprovablegoalstheycanactuallyprove.Ininteractiveproof,"
wespendmostofourtimeonobligationsthatarealmostprovable"
.Thisisthedifferencebetweeninteractiveandautomaticproof.Ifwespendmostofthetimetryingtoprovegoalsthataresimplynotprovable,thencompletenessoftheproofsearchbecomeslessimportant.Thisisnottosaythatitlosesimportancealtogether:
ifasystemlackscompleteness,thenitwillfailtoprovesomeprovablegoals.Itisvitallyimportanttoknowwhatsortofgoalsoneisgivingupon,inorderthatonecanunderstandwhatitmeanswhenaproverfailstoproveagoal.Suchknowledgeisalsousefulwhencombiningsystems:
inordertounderstandthebehaviourofthesystemasawholeone
shouldfirstunderstandthebehaviouroftheparts.
Whatpropertiesmightbepreferred,inaninteractivesetting,overcompleteness?
Forus,themostimportantaspectofautomationissimplicity.Bythiswedonotmeanimplementationsimplicity(howmanylinesdidittaketoimplementthesystem?
etc.),butconceptualsimplicity.Forinstance,simplificationisusedubiquitouslyininteractivetheoremproving.Ifthesetofrewriterulesisnotconfluent,thentounderstandthebehaviourofthesimplifier,onehastounderstandtheorderinwhichtherulesareapplied.Needlesstosay,thisisanextremelycomplexthingtounderstand,andproofswhichdependonthesepropertiesarepresumablyextremelyfragile.Conceptualsimplicityforasimplifieriscloselyboundupwithconfluenceandterminationofthesimpset.Conceptualsimplicityisimportantifauseristounderstandthesystem.Ifasystemisconceptuallysimple,itwillhopefullybesimpletouse.
Inaninteractivesetting,weexpectautomationtofail.Inordertomakeprogress,wemustunderstandwhyaproofattemptfails:
theprovermustprovidefeedback.Resolutionbasedsystemscanprovidefeedback,buttheyaredestructive(inthesensethatthegoalisconvertedintoanormalformbeforetheproofattemptstarts,destroyingtheoriginallogicalstructure),sothatthefeedbackcanbedifficulttounderstand(thepointwheretheprooffailsmaylookverydifferenttotheoriginalgoal).Abetterapproachistoconducttheproofinawaythatisascloseaspossibletohowahumanmightconducttheproof.Werequiretheproofsystemtobenaturalinsomesense.Inthiscase,ifaproofattemptfails,thefailingbranchcanoftenbereturneddirectlytotheuserforinspection.
Feedbackisrelatedtovisibility.Oftenauserwishestoinspectafailedproof,butonlyaprooftraceisavailable,whichcancauseaconceptualmismatch:
theuserisfocusedonsequents,whereasthetracemaybeofadifferentnaturealtogether.Iftherearemanyunprovedbranches,thenausermightnotinspectthemall,butmightwishtostepthroughtheproof.Automaticmethods,suchasJohnHarrison'
simplementationofmodelelimination[Har96],oftensearchforaproofinatreemakinguseofglobalinformationaboutnodesvisitedpreviously.Ifthisglobalinformationisnotpresentinthesequenttheuserhasaccessto,itwillbedifficulttostepthroughtheautomaticproofbysimplyinvokingtheautomaticproverastepatatime:
theautomaticproverwillnotmakethesamedecisionsitmadewhenconductingthesearchusingglobalinformationbecauseitonlyhasaccesstothelocalsequent.
Manymethodscurrentlyemployedbyinteractivetheoremprovers,suchasIsabelle'
sblast,leavethegoalunchangediftheyfailtoproveit.Naturalmethodsofproofsearchexpecttomakeatleastsomeprogressinallsituations,sothattheycanassistevenifthegoalisnotprovable.Forinstance,safesteps(suchas∧Einmanysystems)shouldbeperformed,simplificationstepsappliedandsoon.
Automationshouldalsobestable.Inlargeproofs,onefrequentlymixesinteractiveandautomaticproof.Ifthegoalsreturnedbyautomationareapttochangeradicallywithslightvariationsinthegoal,thenthedependentinteractiveproofscanberendereduseless,an