生物医学统计分析实验6报告文档格式.docx
《生物医学统计分析实验6报告文档格式.docx》由会员分享,可在线阅读,更多相关《生物医学统计分析实验6报告文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
(2)然后将实验指导书中的例1-2运行一遍。
四、实验结果与分析
例某科技人员饲养了35尾团头鲂,共重,在水温29℃的条件下,测量摄食量(g)与耗氧量(mg
/)之间的关系,结果如表7-1所示,试计算摄食量与耗氧量的线性相关系数。
表7-1摄食量不同时团头鲂耗氧量的测定结果
摄食量(g)203040506070
耗氧量(mg
/)
实验结果:
表摄食量与耗氧量的描述性统计量
均值
标准差
N
摄食量
6
耗氧量
表摄食量与耗氧量的相关性
Pearson相关性
1
.990**
显著性(双侧)
.000
分析:
表为摄食量与耗氧量的描述性统计量的输出结果;
表为摄食量与耗氧量之间的相关性分析结果,相关系数r=,在SPSS的输出结果中,相关系数肩标“*”为P<
差异显著;
肩标“*”为P<
,差异极显著。
本例P=<
差异极显著,表明两变量之间存在极显著的正相关关系,即耗氧率随摄食量的增加而增加。
例甲、乙评委对10头母牛进行评定,试分析甲、乙两评委评分的一致性。
表甲、乙两评委评分的相关系数
甲
乙
Kendall的tau_b
相关系数
.732*
Sig.(双侧)
.
.010
10
Spearman的rho
.799**
.006
*.在置信度(双测)为时,相关性是显著的。
该题属于定序分析,只能用Kendall和Spearman分析,不能用Pearson分析;
表是甲乙两个评委对奶牛的等级评定的kendallζ秩相关分析与Spearman秩相关分析结果。
由此可知,Kendallζ相关系数为,P=<
,秩相关系数具有显著的统计学意义;
Spearman秩相关系数为,P=<
,说明具有极显著的统计学意义。
于是可认为两个评委的评定等级具有显著的一致性,即两者结论一致。
例8头金华猪胴体的肉色与PH值的大小顺序是否相关
表金华猪胴体的肉色与PH值的相关性
肉色评分
PH
.850**
.008
8
**.在.01水平(双侧)上显著相关。
表金华猪胴体的肉色与PH值的相关系数
.737*
.020
00
.848**
**.在置信度(双测)为时,相关性是显著的。
表可知,肉色评分与PH值的Pearson秩相关系数为,P=<
差异极显著,说明金华猪肉色与PH值的大小顺序有关。
同样的,该题属于定距分类,所以可以利用Kendall和Spearman分析,结果和Pearson分析一样。
由表可知,Kendall的秩相关系数为,P=<
,Spearman的秩相关系数为0.848,P=<
,差异极显著,说明金华猪的肉色与PH值的大小顺序有关。
例穗数(X1)、粒数(X2)、产量(y)的相关分析
表穗数、粒数、产量的描述性统计量
穗数x1
13
粒数x2
产量y
5
.77
表穗数、粒数、产量的相关性分析
**
.627*
.0
2
.013
.967
.022
*.在水平(双侧)上显著相关。
表为穗数、粒数、产量的均数标准差。
穗数X1:
⎺X=,S=,粒数X2:
⎺X=,S=,产量y:
⎺X=,S=;
表为穗数、粒数、产量相关分析结果。
穗数X1与粒数X2的相关系数r=,P=<
差异极显著,即两者存在极显著的线性负相关关系;
穗数X1与产量y的相关系数r=,P=<
差异显著,两者存在正相关关系;
粒数X2与产量的r=,P=>
说明两者相关系不显著。
例随机抽测某渔场16次放养记录,对鱼产量(y)和投饵量(X1)、放养量(X2)
进行偏相关分析。
表鱼产量、投饵量、放养量描述统计量
投饵量x1
16
鱼产量y
放养量x2
.5123
表鱼产量、投饵量、放养量三个变量间的简单相关分析
控制变量
-无-a
相关性
.332
.209
.131
df
14
.561
.024
a.单元格包含零阶(Pearson)相关。
b.
表三变量间的相关分析(控制变量为放养量)
.727
.002
表三变量间的相关分析(控制变量为投饵量)
.798
表三变量间的相关分析(控制变量为鱼产量)
.001
该题有三个变量,在进行分析的时候两两变量间可能受第三个变量影响,因此需要进行偏相关分析;
表为鱼产量、投饵量、放养量三变量的均数和标准差。
鱼产量y:
⎺X=,
S=,投饵量X1:
⎺X=,S=,放养量X2:
⎺X=,S=。
表给出的是三个变量间的简单相关分析,可见如果单独分析,鱼产量y与
放养量X2的相关系数r2y=,P<
具有显著地统计学意义;
而鱼产量y与
投饵量X1的相关系数r1y=,P>
不存在显著相关关系;
放养量X2、投饵
量X1的相关系数r12=,P=,未达到显著水平;
但当控制其中一个变量进行偏相关分析时,结果则不同:
由表可知,当控制了放养量X2的影响后得到的鱼产量y和投饵量X1的偏
相关系数=,P<
说明两者具有极显著的正相关关系;
同样的表可知,当控制了投饵量X1的影响后,鱼产量y与放养量X2的偏
相关系数=,P<
两者相关关系达到极显著水平,而未控制前两者的
相关系数r2y=,P<
,只达到显著水平;
表为控制鱼产量y的影响后投饵量X1与放养量X2的偏相关系数,此时
=,P<
,两者相关关系达到极显著水平,而未控制前两者的相关
关系r12。
y=,P>
未达到显著水平。
例1分析健康儿童头发和全血中的硒含量
表1-1发硒和血硒的描述性统计量
发硒
血硒
表1-2发硒和血硒的相关性
.872**
该题分析发硒和血硒的相关性,属于定距变量,可以用Pearson、Kendall和Spearman分析,此处选用Pearson来分析;
表1-1显示发硒和血硒的均值、标准差和样本个数;
表1-2为Pearson相关性分析结果,本例相关系数r=,P=<
差异极显著,表明两变量之间存在极显著的正相关关系,即健康儿童头发和全血中的硒含量成正相关,发硒越多,血硒越多。
例2对某地29名男童的身高(cm)和体重(kg)、肺活量(ml)进行偏相关分析
表2-1身高、体重、肺活量三个变量间的简单相关分析
身高
肺活量
体重
.588
.719
27
.613
表2-2三变量间的偏相关分析(控制变量为体重)
.269
.167
26
显著性(双侧)
表2-3三变量间的偏相关分析(控制变量为身高)
.337
.079
表2-3三变量间的偏相关分析(控制变量为肺活量)
.562
该题有三个变量,在进行分析的时候两两变量间可能受第三个变量影响,因此需要进行偏相关分析;
表2-1为三个变量间的简单相关分析,可见如果单独分析,身高与体重的相关系数为,P=<
具有极显著地统计学意义;
身高与肺活量的相关系数为,P=<
存在显著相关关系;
体重与肺活量的相关系数为,P=<
达到极显著水平;
由表2-2可知,当控制了体重的影响后得到的身高与肺活量的的偏相关系数为,P=>
说明两者未达到显著水平;
同样的由表2-3可知,当控制了身高的影响后,体重与肺活量的的偏相关系数为,P=>
说明两者未达到显著水平;
表2-4为控制肺活量的影响后身高与体重的偏相关系数为,P=<
,两者相关关系达到极显著水平。
五、实验小结
在涉及多个变量的生物学研究中,由于变量之间的关系比较复杂,任何两个变量间都有可能存在不同程度的线性相关关系,但是这种相关关系又含有其他变量的影响。
因此,简单相关分析实际上并不能真实反映两个变量间的相关关系,此时,应该用偏相关分析。
手写签名: