学术英语论文Word下载.docx

上传人:b****7 文档编号:21848609 上传时间:2023-02-01 格式:DOCX 页数:5 大小:232.11KB
下载 相关 举报
学术英语论文Word下载.docx_第1页
第1页 / 共5页
学术英语论文Word下载.docx_第2页
第2页 / 共5页
学术英语论文Word下载.docx_第3页
第3页 / 共5页
学术英语论文Word下载.docx_第4页
第4页 / 共5页
学术英语论文Word下载.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

学术英语论文Word下载.docx

《学术英语论文Word下载.docx》由会员分享,可在线阅读,更多相关《学术英语论文Word下载.docx(5页珍藏版)》请在冰豆网上搜索。

学术英语论文Word下载.docx

学术英语

题目:

AStudyofEnergyEfficient_

CloudComputingPoweredby

_WirelessEnergyTransfer___

英语班级:

理工1615班

专业/年级:

物联网工程161班

姓名/学号:

(47)

二零一八年六月

AStudyofEnergyEfficientMobileCloudComputingPoweredbyWirelessEnergyTransfer

Abstract

Achievinglongbatterylivesorevenself-sustainabilityhasbeenalongstandingchallengefordesigningmobiledevices.Thisstudypresentsanovelsolutionthatseamlesslyintegratestwotechnologies,mobilecloudcomputingandmicrowavepowertransfer(MPT),toenablecomputationinpassivelow-complexitydevicessuchassensorsandwearablecomputingdevices.Specifically,consideringasingle-usersystem,abasestation(BS)eithertransferspowertooroffloadscomputationfromamobiletothecloud;

themobileusesharvestedenergytocomputegivendataeitherlocallyorbyoffloading.AframeworkforenergyefficientcomputingisproposedthatcomprisesasetofpoliciesforcontrollingCPUcyclesforthemodeoflocalcomputing,timedivisionbetweenMPTandoffloadingfortheothermodeofoffloading,andmodeselection.GiventheCPU-cyclestatisticsinformationandchannelstateinformation(CSI),thepoliciesaimatmaximizingtheprobabilityofsuccessfullycomputinggivendata,calledcomputingprobability,undertheenergyharvestinganddeadlineconstraints.Furthermore,thisstudyrevealsthatthetwosimplesolutionstoachievetheobjecttosupportcomputationloadallocationovermultiplechannelrealizations,whichfurtherincreasesthecomputingprobability.Last,thetwokindsofmodessuggestthatthefeasibilityofwirelesslypoweredmobilecloudcomputingandthegainofitsoptimalcontrol.Andthefutureaspecttostudyissimplytobeanswer.

Keywords:

wirelesspowertransfer;

energyharvestingcommunications;

mobilecloudcomputing;

energyefficientcomputing

 

Introduction

Mobilecloudcomputing(MCC)asanemergingcomputingparadigmintegratescloudcomputingandmobilecomputingtoenhancethecomputationperformanceofmobiledevices.TheobjectiveofMCCistoextendpowerfulcomputingcapabilityoftheresource-richcloudstotheresource-constrainedmobiledevices(e.g.,laptop,tabletandsmartphone)soastoreducecomputationtime,conservelocalresources,especiallybattery,andextendstoragecapacity.Toachievethisobjective,MCCneedstotransferresource-intensivecomputationsfrommobiledevicestoclouds,referredtoascomputationoffloading.Thecoreofcomputationoffloadingistodecideonwhichcomputationtasksshouldbeexecutedonthemobiledeviceoronthecloud,andhowtoschedulelocalandcloudresourcetoimplementtaskoffloading.TheexplosivegrowthofInternetofThings(IOT)andmobilecommunicationisleadingtothedeploymentoftensofbillionsofcloud-basedmobilesensorsandwearablecomputingdevicesinnearfuture(Huang&

Chae,2010).Prolongingtheirbatterylivesandenhancingtheircomputingcapabilitiesaretwokeydesignchallenges.Theycanbetackledbytwopromisingtechnologies:

microwavepowertransfer(MPT)forpoweringthemobilescomputation-intensivetasksfromthemobilestothecloudandmobilecomputationoffloading(MCO).Twotechnologiesareseamlesslyintegratedinthecurrentworktodevelopanoveldesignframeworkforrealizingwirelesslypoweredmobilecloudcomputingunderthecriterionofmaximizingtheprobabilityofsuccessfullycomputinggivendata,calledcomputingprobability.TheframeworkisfeasiblesinceMPThasbeenproveninvariousexperimentsforpoweringsmalldevicessuchassensorsorevensmall-scaleairplanesandhelicopters.Furthermore,sensorsandwearablecomputingdevicestargetedintheframeworkareexpectedtobeconnectedbythecloud-basedIOTinthefuture,providingasuitableplatformforrealizingMCO.

Materials

MCOhasbeenanactiveresearchareaincomputersciencewhereresearchhasfocusedondesigningmobile-cloudsystemsandsoftwarearchitectures,virtualmachinemigrationdesigninthecloudandcodepartitioningtechniquesinthemobilesforreducingtheenergyconsumptionandimprovingthecomputingperformanceofmobiles.Nevertheless,implementationofMCOrequiresdatatransmissionandmessagepassingoverwirelesschannels,incurringtransmissionpowerconsumption.Theexistenceofsuchatradeoffhasmotivatedcross-disciplinaryresearchonjointlydesigningMCOandadaptivetransmissionalgorithmstomaximizethemobileenergysavings.Astochasticcontrolalgorithmwasproposedforadaptingtheoffloadedcomponentsofanapplicationtoatime-varyingwirelesschannel.Furthermore,multiusercomputationoffloadinginamulti-cellsystemwasexploredbyShinohara(2014),wheretheradioandcomputationalresourceswerejointlyallocatedformaximizingtheenergysavingsunderthelatencyconstraints.

AccordingtoSwan(2012),thethreshold-basedoffloadingpolicywasderivedforthesystemwithintermittentconnectivitybetweenthemobileandcloud.Lastly,theCPU-cyclefrequenciesarejointlycontrolledwithMCOgivenamoreskilledandincreasinglyappropriate

wirelesschannel.TheframeworkisfurtherdevelopedinthecurrentworktoincludethenewfeatureofMPT(Kostaetal.,2012).Thisintroducesseveralnewdesignchallenges.Amongothers,thealgorithmicdesignoflocalcomputingandoffloadingbecomesmorecomplexundertheenergyharvestingconstraintduetoMPT,whichpreventsenergyconsumptionfromexceedingtheamountofharvestedenergyateverytimeinstant.AnotherchallengeisthatMPTandoffloadingtimesharethemobileantennaandthetimedivisionhastobeoptimized.

Nowthetechnologyisbeingfurtherdevelopedtopowerwirelesscommunications.Thishasresultedintheemergenceofanactivefieldcalledsimultaneouswirelessinformationandpowertransfer(SWIPT).TheMPTtechnologyhasbeendevelopedforpoint-to-pointhighpowertransmissioninthepastdecades(Brown,1984).Furthermore,existingwirelessnetworkssuchascognitiveradioandcellularnetworkshavebeenredesignedtofeatureMPT.MostpriorworkonSWIPTaimsatoptimizingcommunicationtechniquestomaximizetheMPTefficiencyandsystemthroughput.Incontrast,thecurrentworkfocusesonoptimizingthelocalcomputingandoffloadingunderadifferentdesigncriterionofmaximumcomputingprobability(Huang&

Lau,2014).

MethodsandResults

Considerasingle-usersystemcomprisingonemulti-antennabasestation(BS)usingtransmit/receivebeamformingfortransferringpowertoasingle-antennamobileorrelayingoffloadeddatafromthemobiletothecloud.Tocomputeafixedamountofdata,themobileoperatesinoneofthetwoavailablemodes:

Localcomputingandoffloading:

inthemodeoflocalcomputing,MPToccurssimultaneouslyascomputingbasedonthecontrollableCPU-cyclefrequencies.Nevertheless,inthemodeofoffloading,thegivencomputationdurationisadaptivelypartitionedforseparateMPTandoffloadingsincetheysharethemobileantenna(Shinohara,2014).AssumethatthemobilehastheknowledgeofstatisticsinformationofCPUcyclesandchannelstateinformation(CSI).Theindividualmodesaswellasmodeselectionareoptimizedformaximizingthecomputingprobabilityundertheenergyharvestinganddeadlineconstraints.Fortractability,themetricistransformedintoequivalentones,namelyaveragemobileenergyconsumptionandmobileenergysavings,forthemodesoflocalcomputingandoffloading,respectively.Comparedwiththepriorwork,thecurrentworkintegratesMPTwiththemobilecloudcomputing,whichintroducesnewtheoreticalchallenges.Inparticular,theenergyharvestingconstraintarisingfromMPTmakestheoptimizationproblemforlocalcomputingnon-convex.Totacklethechallenge,theconvexrelaxationtechniqueisappliedwithoutcompromisingtheoptimalityofthesolution.ItisshowninthesequelthatthelocalcomputingpolicyisaspecialcaseofthecurrentworkwherethetransferredpowerissufficientlyhighbySwan(2012).Furthermore,thecaseofdynamicchannelformobilecloudcomputingisexplored.Approximationmethodsareusedforderivingthesimpleandclose-to-optimalpolicies.

Mobilemodeselection:

Theaboveresultsarecombinedtoselectthemobilemodeformaximizingthecomputingprobability.Givenfeasiblecomputinginbothmodes,theonlyone

yieldingthelargerenergysavingsispreferredandtheselectioncriterionisderivedintermsofthresholdsontheBStransmissionpoweraswellasthedeadlineforcomputing(Huangetal.,2012).

Optimaldataallocationforadynamicchannel:

Last,theaboveresultsareextendedtothecaseofadynamicchannel,modeledasindependentandidenticallydistributed.blockfading,andnon-causalCSIatthemobile(acquiredfrome.g.,channelprediction).Theproblemofoptimizinganindividualmobilemode(localcomputingoroffloading)isformulatedbasedonthemaster-and-slavemodelusingthesamemetricasthefixed-channelcounterpart(Kumar&

Liu,2013).

Conclusion

Wirelessandmobilecomputingtechnologiesprovidemorepossibilitiesforaccessingservicesconveniently.Mobiledeviceswillbeimprovedintermsofpower,CPU,andstorage.Mobilecloudcomputinghasemergedasanewparadigmandextensionofcloudcomputing.

Bytwokindsofavailablemodes,wecanpurelyknowoftheEnergyEfficientMobileCloudComputing.ThroughmystudyfortheMobileCloudComputing,wearehereexposingtwosimplesolutionstosolvethisproblem.Althoughmyresearchisprettybasic,itstillbenefittheprocessofthedevelopmentformobilecloudcomputingandhowtomakeitenergyefficient.Webelievethatexploringotheralternatives,suchasintroducingamiddlewarebasedarchitectureusinganoptimizingoffloadingalgorithm

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1