届高三数学理大一轮复习第1章集合与常用逻辑用语Word文档下载推荐.docx
《届高三数学理大一轮复习第1章集合与常用逻辑用语Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《届高三数学理大一轮复习第1章集合与常用逻辑用语Word文档下载推荐.docx(51页珍藏版)》请在冰豆网上搜索。
(2)当a=0时,显然成立;
当a≠0时,Δ=(-3)2-8a=0,即a=
.故a=0或
.
[答案]
(1)C
(2)D
[方法技巧]
求元素(个数)的方法
高考中,常利用集合元素的互异性确定集合中的元素,一般给定一个新定义集合,如“已知集合A,B,求集合C={z|z=x*y,x∈A,y∈B}(或集合C的元素个数),其中‘*’表示题目设定的某一种运算”.具体的解决方法:
根据题目规定的运算“*”,一一列举x,y的可能取值(应用列举法和分类讨论思想),从而得出z的所有可能取值,然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.
元素与集合的关系
[例2]
(1)设集合A={2,3,4},B={2,4,6},若x∈A,且x∉B,则x=( )
A.2B.3C.4D.6
(2)(2017·
成都诊断)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.
[解析]
(1)因为x∈A,且x∉B,故x=3.
(2)因为3∈A,
所以m+2=3或2m2+m=3.
当m+2=3,
即m=1时,2m2+m=3,
此时集合A中有重复元素3,
所以m=1不符合题意,舍去;
当2m2+m=3时,
解得m=-
或m=1(舍去),
当m=-
时,m+2=
≠3符合题意.
所以m=-
[答案]
(1)B
(2)-
[方法技巧]
利用元素的性质求参数的方法
已知一个元素属于集合,求集合中所含的参数值.具体解法:
(1)确定性的运用:
利用集合中元素的确定性解出参数的所有可能值.
(2)互异性的运用:
根据集合中元素的互异性对集合中元素进行检验.
能力练通抓应用体验的“得”与“失”
1.
设集合P={x|x2-
x≤0},m=30.5,则下列关系正确的是( )
A.mPB.m∈P
C.m∉PD.m⊆P
解析:
选C 易知P={x|0≤x≤
},而m=30.5=
>
,∴m∉P,故选C.
2.[考点一]已知集合A={1,2,4},则集合B={(x,y)|x∈A,y∈A}中元素的个数为( )
A.3B.6
C.8D.9
选D 集合B中的元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.
3.[考点二](2017·
杭州模拟)设a,b∈R,集合{1,a+b,a}=
,则b-a=( )
A.1B.-1
C.2D.-2
选C 因为{1,a+b,a}=
,a≠0,所以a+b=0,则
=-1,所以a=-1,b=1.所以b-a=2.
4.[考点一]已知P={x|2<
x<
k,x∈N},若集合P中恰有3个元素,则k的取值范围为________.
因为P中恰有3个元素,所以P={3,4,5},故k的取值范围为5<
k≤6.
答案:
(5,6]
5.[考点一]若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=________.
当a=0时,方程无解;
当a≠0时,则Δ=a2-4a=0,解得a=4.故符合题意的a的值为4.
4
突破点
(二) 集合间的基本关系
表示
关系
文字语言
集合间的基本关系
子集
集合A中任意一个元素都是集合B中的元素
A⊆B或B⊇A
真子集
集合A是集合B的子集,并且B中至少有一个元素不属于A
AB或BA
相等
集合A的每一个元素都是集合B的元素,集合B的每一个元素也都是集合A的元素
A⊆B且B⊆A⇔A=B
空集
空集是任何集合的子集
∅⊆A
空集是任何非空集合的真子集
∅B且B≠∅
集合子集个数的判定
含有n个元素的集合,其子集的个数为2n;
真子集的个数为2n-1(除集合本身);
非空真子集的个数为2n-2(除空集和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )
A.1B.2
C.3D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒]
(1)注意空集的特殊性:
空集是任何集合的子集,是任何非空集合的真子集.
(2)任何集合的本身是该集合的子集,在列举时千万不要忘记.
集合间的关系
考法
(一) 集合间关系的判定
[例2] 已知集合A={x|y=
,x∈R},B={x|x=m2,m∈A},则( )
A.ABB.BA
C.A⊆BD.B=A
[解析] 由题意知A={x|y=
,x∈R},
所以A={x|-1≤x≤1},
所以B={x|x=m2,m∈A}={x|0≤x≤1},
所以BA.故选B.
[答案] B
[方法技巧]
判断集合间关系的三种方法
(1)列举法:
根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.
(2)结构法:
从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.
(3)数轴法:
在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.
[提醒] 在用数轴法判断集合间的关系时,其端点能否取到,一定要注意用回代检验的方法来确定.如果两个集合的端点相同,则两个集合是否能同时取到端点往往决定了集合之间的关系.
考法
(二) 根据集合间的关系求参数
[例3] 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.
[解析] ∵B⊆A,∴①若B=∅,
则2m-1<
m+1,此时m<
2.
②若B≠∅,则
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为(-∞,3].
[答案] (-∞,3]
将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.
1.[考点一]集合A={x∈N|0<
4}的真子集个数为( )
A.3B.4
C.7D.8
选C 因为A={1,2,3},所以其真子集的个数为23-1=7.
2.[考点二·
考法
(一)](2017·
长沙模拟)设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则( )
A.P⊆QB.Q⊆P
C.∁RP⊆QD.Q⊆∁RP
选C 因为P={y|y=-x2+1,x∈R}={y|y≤1},
所以∁RP={y|y>
1},又Q={y|y=2x,x∈R}={y|y>
0},所以∁RP⊆Q,故选C.
3.[考点二·
考法
(二)]已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=( )
A.1B.0C.-2D.-3
选C ∵A⊆B,∴a+3=1,解得a=-2.故选C.
4.[考点二·
考法
(二)]已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.
集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],因为A⊆B,所以a≤2,b≥4,所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].
(-∞,-2]
突破点(三) 集合的基本运算
1.集合的三种基本运算
符号表示
图形表示
符号语言
集合的并集
A∪B
A∪B={x|x∈A,或x∈B}
集合的交集
A∩B
A∩B={x|x∈A,且x∈B}
集合的补集
若全集为U,则集合A的补集为∁UA
∁UA={x|x∈U,且x∉A}
2.集合的三种基本运算的常见性质
(1)A∩A=A,A∩∅=∅,A∪A=A,A∪∅=A.
(2)A∩∁UA=∅,A∪∁UA=U,∁U(∁UA)=A.
(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB⇔A∩(∁UB)=∅.
求交集或并集
[例1]
(1)(2016·
全国甲卷)已知集合A={1,2,3},B={x|(x+1)(x-2)<
0,x∈Z},则A∪B=( )
A.{1}B.{1,2}
C.{0,1,2,3}D.{-1,0,1,2,3}
(2)(2016·
全国乙卷)设集合A={x|x2-4x+3<
0},B={x|2x-3>
0},则A∩B=( )
B.
C.
D.
[解析]
(1)因为B={x|(x+1)(x-2)<
0,x∈Z}={x|-1<
2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.
(2)∵x2-4x+3<
0,∴1<
3,∴A={x|1<
3}.∵2x-3>
0,∴x>
,∴B=
.∴A∩B={x|1<
3}∩
=
求集合的交集或并集时,应先化简集合,再利用交集、并集的定义求解.
交、并、补的混合运算
[例2]
(1)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=( )
A.{2,5} B.{3,6}
C.{2,5,6}D.{2,3,5,6,8}
(2)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )
A.{x|x≥0}B.{x|x≤1}
C.{x|0≤x≤1}D.{x|0<
1}
[解析]
(1)因为∁UB={2,5,8},所以A∩∁UB={2,3,5,6}∩{2,5,8}={2,5}.
(2)∵A∪B={x|x≤0}∪{x|x≥1}={x|x≤0或x≥1},
∴∁U(A∪B)={x|0<
1}.
[答案]
(1)A
(2)D
集合混合运算的解题思路
进行集合的混合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;
当集合用不等式形式表示时,可借助数轴求解,对于端点值的取舍,应单独检验.
集合的新定义问题
[例3] (2017·
合肥模拟)对于集合M,N,定义M-N={x|x∈M,且x∉N},M⊕N=(M-N)∪(N-M).设A={y|y=x2-3x,x∈R},B={y|y=-2x,x∈R},则A⊕B等于( )
A.
B.
∪[0,+∞)
D.
∪(0,+∞)
[解析] 因为A=
,B={y|y<
0},
所以A-B={y|y≥0},B-A=
,
A⊕B=(A-B)∪(B-A)=
故选C.
[答案] C
解决集合新定义问题的两个着手点
(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.
(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.
1.[考点一](2016·
北京高考)已知集合A={x||x|<
2},B={-1,0,1,2,3},则A∩B=( )
A.{0,1}B.{0,1,2}
C.{-1,0,1}D.{-1,0,1,2}
选C 集合A={x|-2<
2},集合B={-1,0,1,2,3},所以A∩B={-1,0,1}.
2.[考点一](2017·
长春模拟)设集合A={y|y=2x,x∈R},B={x|x2-1<
0},则A∪B=( )
A.(-1,1)B.(0,1)
C.(-1,+∞)D.(0,+∞)
选C ∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.
贵阳模拟)设集合A={x|1<
4},集合B={x|x2-2x-3≤0},则A∩(∁RB)=( )
A.(1,4)B.(3,4)
C.(1,3)D.(1,2)∪(3,4)
选B 由题意知B={x|-1≤x≤3},
所以∁RB={x|x<
-1或x>
3},
所以A∩(∁RB)={x|3<
4},故选B.
4.[考点三]定义集合A,B的一种运算:
A*B={x|x=x1·
x2,其中x1∈A,x2∈B},若A={1,2},B={1,2},则A*B中的所有元素之和为( )
A.5B.6C.7D.9
选C ∵A*B={x|x=x1·
x2,其中x1∈A,x2∈B},且A={1,2},B={1,2},∴A*B={1,2,4},
故A*B中的所有元素之和为1+2+4=7.
5.[考点二]设全集U=R,A={x|x(x+3)<
0},B={x|x<
-1},则图中阴影部分表示的集合为________.
因为A={x|x(x+3)<
0}={x|-3<
0},∁UB={x|x≥-1},阴影部分为A∩(∁UB),所以A∩(∁UB)={x|-1≤x<
0}.
{x|-1≤x<
0}
[全国卷5年真题集中演练——明规律]
1.(2016·
全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>
0},则S∩T=( )
A.[2,3]B.(-∞,2]∪[3,+∞)
C.[3,+∞)D.(0,2]∪[3,+∞)
选D 由题意知S={x|x≤2或x≥3},则S∩T={x|0<
x≤2或x≥3}.故选D.
2.(2015·
新课标全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<
A.{-1,0}B.{0,1}
C.{-1,0,1}D.{0,1,2}
选A 由题意知B={x|-2<
1},所以A∩B={-1,0}.故选A.
3.(2012·
新课标全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )
A.3B.6C.8D.10
选D 列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.
4.(2016·
全国甲卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=( )
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}
C.{1,2,3}D.{1,2}
选D ∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A={1,2,3},∴A∩B={1,2,3}∩{x|-3<x<3}={1,2},故选D.
5.(2013·
新课标全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )
A.{1,4}B.{2,3}C.{9,16}D.{1,2}
选A 因为x=n2,所以当n=1,2,3,4时,x=1,4,9,16,所以集合B={1,4,9,16},所以A∩B={1,4}.
[课时达标检测]基础送分课时——精练“12+4”,求准求快不深挖
一、选择题
1.若集合A={(1,2),(3,4)},则集合A的真子集的个数是( )
A.16B.8
C.4D.3
选D 集合A中有两个元素,则集合A的真子集的个数是22-1=3.选D.
2.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=( )
A.{0}B.{1}
C.{0,1}D.{0,-1}
选C 因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.
3.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )
A.-3∈AB.3∉B
C.A∩B=BD.A∪B=B
选C 由题A={y|y≥-1},因此A∩B={x|x≥2}=B.
4.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=( )
A.[0,1]B.(0,1]
C.[0,1)D.(-∞,1]
选A M={x|x2=x}={0,1},N={x|lgx≤0}={x|0<x≤1},M∪N=[0,1].
5.已知集合A=
,则集合A中的元素个数为( )
A.2B.3C.4D.5
选C ∵
∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x值分别为5,3,1,-1,故集合A中的元素个数为4.
6.已知全集为整数集Z.若集合A={x|y=
,x∈Z},B={x|x2+2x>
0,x∈Z},则A∩(∁ZB)=( )
A.{-2}B.{-1}
C.[-2,0]D.{-2,-1,0}
选D 由题可知,集合A={x|x≤1,x∈Z},B={x|x>
0或x<
-2,x∈Z},故A∩(∁ZB)={-2,-1,0},故选D.
7.(2017·
成都模拟)已知全集U=R,集合A={x|0≤x≤2},B={x|x2-1<
0},则图中的阴影部分表示的集合为( )
A.(-∞,1]∩(2,+∞)B.(-1,0)∪[1,2]
C.[1,2)D.(1,2]
选B 因为A={x|0≤x≤2},B={x|-1<
1},所以A∪B={x|-1<
x≤2},A∩B={x|0≤x<
1}.故图中阴影部分表示的集合为∁(A∪B)(A∩B)=(-1,0)∪[1,2].
8.设全集U=R,已知集合A={x||x|≤1},B={x|log2x≤1},则(∁UA)∩B=( )
A.(0,1]B.[-1,1]
C.(1,2]D.(-∞,-1]∪[1,2]
选C 由|x|≤1,得-1≤x≤1,由log2x≤1,得0<
x≤2,所以∁UA={x|x>
1或x<
-1},则(∁UA)∩B=(1,2].
9.设集合A=
,B={b,a+b,-1},若A∩B={2,-1},则A∪B=( )
A.{2,3}B.{-1,2,5}
C.{2,3,5}D.{-1,2,3,5}
选D 由A∩B={2,-1},可得
或
当
时,
此时B={2,3,-1},则A∪B={-1,2,3,5};
此时不符合题意,舍去.故A∪B={-1,2,3,5}.
10.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>
0},若A⊆B,则实数a的取值范围是( )
A.(-∞,-1)B.(-∞,-1]
C.(-∞,-2)D.(-∞,-2]
选B 集合A={x|y=lg(-x2+x+2)}={x|-1<
2},B={x|x>
a},因为A⊆B,所以a≤-1.
11.已知全集U={x∈Z|0<
8},集合M={2,3,5},N={x|x2-8x+12=0},则集合{1,4,7}为( )
A.M∩(∁UN)B.∁U(M∩N)
C.∁U(M∪N)D.(∁UM)∩N
选C 由已知得U={1,2,3,4,5,6,7},N={2,6},M∩(∁UN)={2,3,5}∩{1,3,4,5,7}={3,5},M∩N={2},∁U(M∩N)={1,3,4,5,6,7},M∪N={2,3,5,6},∁U(M∪N)={1,4,7},(∁UM)∩N={1,4,6,7}∩{2,6}={6},故选C.
12.(2017·
沈阳模拟)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:
A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为( )
A.15B.16C.20D.21
选D 由x2-2x-3≤0,得(x+1)(x-3)≤0,又x∈N,故集合A={0,1,2,3}.∵A*B={x|x=x1+x2,x1∈A,x2∈B},∴A*B中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A*B={1,2,3,4,5,6},∴A*B中的所有元素之和为21.
二、填空题
13.已知集合A={1,2,3,4},B={2,4,6,8},定义集合A×
B={(x,y)|x∈A,y∈B},集合A×
B中属于集合{(x,y)|logxy∈N}的元素的个数是________.
由定义可知A×
B中的元素为(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8).其中使logxy∈N的有(2,2),(2,4),(2,8),(4,4),共4个.
14.设集合I={x|-3<
3,x∈Z},A={1,2},B={-2,-1,2},则A∩(∁IB)=________.
∵集合I={x|-3<
3,x∈Z}={-2,-1,0,1,2},A={1,2},B={-2,-1,2},∴∁IB={0,1},则A∩(∁IB)={1}.
{1}
15.集合A={x|x2+x-6≤0},B={y|y=
,0≤x≤4},则A∩(∁RB)=________.
A={x|x2+x-6≤0