初二数学下册复习大纲知识点Word格式.docx

上传人:b****5 文档编号:21709250 上传时间:2023-01-31 格式:DOCX 页数:8 大小:98.52KB
下载 相关 举报
初二数学下册复习大纲知识点Word格式.docx_第1页
第1页 / 共8页
初二数学下册复习大纲知识点Word格式.docx_第2页
第2页 / 共8页
初二数学下册复习大纲知识点Word格式.docx_第3页
第3页 / 共8页
初二数学下册复习大纲知识点Word格式.docx_第4页
第4页 / 共8页
初二数学下册复习大纲知识点Word格式.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

初二数学下册复习大纲知识点Word格式.docx

《初二数学下册复习大纲知识点Word格式.docx》由会员分享,可在线阅读,更多相关《初二数学下册复习大纲知识点Word格式.docx(8页珍藏版)》请在冰豆网上搜索。

初二数学下册复习大纲知识点Word格式.docx

1全等三角形的性质:

全等三角形的对应边、对应角相等

2全等三角形的判定

边边边、边角边、角边角、角角边、直角三角形的HL定理

3角平分线的性质

角平分线上的点到角的两边的距离相等;

到角的两边距离相等的点在角的平分线上。

第四章轴对称

1轴对称图形和关于直线对称的两个图形

2轴对称的性质

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等;

到线段两个端点距离相等的点在这条线段的垂直平分线上

3用坐标表示轴对称

点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

4等腰三角形

等腰三角形的两个底角相等;

(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;

(三线合一)

一个三角形的两个相等的角所对的边也相等。

(等角对等边)

5等边三角形的性质和判定

等边三角形的三个内角都相等,都等于60度;

三个角都相等的三角形是等边三角形;

有一个角是60度的等腰三角形是等边三角形;

推论:

直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。

在三角形中,大角对大边,大边对大角。

第五章整式

1整式定义、同类项及其合并

2整式的加减

3整式的乘法

(1)同底数幂的乘法:

(2)幂的乘方

(3)积的乘方

(4)整式的乘法

4乘法公式

(1)平方差公式

(2)完全平方公式

5整式的除法

(1)同底数幂的除法

(2)整式的除法

6因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

初二下册知识点

第一章分式

1分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除

乘法法则:

分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母 

除法法则:

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减

加减法法则:

同分母分式相加减,分母不变,把分子相加减;

异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:

双曲线

表达式:

y=k/x(k不为0)

性质:

两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:

直角三角形的两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:

如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1平行四边形

对边相等;

对角相等;

对角线互相平分。

判定:

两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:

三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:

矩形、菱形、正方形

(1)矩形

性质:

矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:

有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

直角三角形斜边的中线等于斜边的一半。

(2)菱形

菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3)正方形:

既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:

直角梯形和等腰梯形

等腰梯形:

等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

知识要点1.分式的有关概念

设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义

分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简

2、分式的基本性质

(M为不等于零的整式)

3.分式的运算(分式的运算法则与分数的运算法则类似).

(异分母相加,先通分);

4.零指数

5.负整数指数

注意正整数幂的运算性质

可以推广到整数指数幂,也就是上述等式中的m、n可以是O或负整数.

6、解分式方程的一般步骤:

在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;

若结果是0,说明此根是原方程的增根,必须舍去.

7、列分式方程解应用题的一般步骤:

(1)审清题意;

(2)设未知数(要有单位);

(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;

(4)解方程,并验根,还要看方程的解是否符合题意;

(5)写出答案(要有单位)。

正比例、反比例、一次函数

第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);

x轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x轴上,y轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y轴上,

若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;

若两个点关于x轴对称,横坐标相等,纵坐标互为相反数;

若两个点关于y轴对称,纵坐标相等,横坐标互为相反数;

若两个点关于原点对称,横坐标、纵坐标都是互为相反数。

1、一次函数,正比例函数的定义

(1)如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数。

(2)当b=0时,一次函数y=kx+b即为y=kx(k≠0).这时,y叫做x的正比例函数。

注:

正比例函数是特殊的一次函数,一次函数包含正比例函数。

2、正比例函数的图象与性质

(1)正比例函数y=kx(k≠0)的图象是过(0,0)(1,k)的一条直线。

(2)当k>

0时y随x的增大而增大直线y=kx经过一、三象限从左到右直线上升。

当k<

0时y随x的增大而减少直线y=kx经过二、四象限从左到右直线下降。

3、一次函数的图象与性质

(1)一次函数y=kx+b(k≠0)的图象是过(0,b)(-

,0)的一条直线。

(0,b)是直线与y轴交点坐标,(-

,0)是直线与x轴交点坐标.

0时y随x的增大而增大直线y=kx+b(k≠0)是上升的

0时y随x的增大而减少直线y=kx+b(k≠0)是下降的

4、一次函数y=kx+b(k≠0,kb为常数)中k、b的符号对图象的影响

(1)k>

0,b>

0直线经过一、二、三象限

(2)k>

0,b<

0直线经过一、三、四象限

(3)k<

0直线经过一、二、四象限

(4)k<

0直线经过二、三、四象限

5、对一次函数y=kx+b的系数k,b的理解。

(1)k(k≠0)相同,b不同时的所有直线平行,即直线

直线

均不为零,

为常数)

(2)k(k≠0)不同,b相同时的所有直线恒过y轴上一定点(0,b),例如:

直线y=2x+3,y=-2x+3,均交于y轴一点(0,3)

6、直线的平移:

所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k不变,直线沿y轴平移多少个单位,可由公式

得到,其中b1,b2是两直线与y轴交点的纵坐标,直线沿x轴平移多少个单位,可由公式

求得,其中x1,x2是由两直线与x轴交点的横坐标。

7、直线y=kx+b(k≠0)与方程、不等式的联系

(1)一条直线y=kx+b(k≠0)就是一个关于y的二元一次方程

(2)求两直线

的交点,就是解关于x,y的方程组

(3)若y>

0则kx+b>

0。

若y<

0,则kx+b<

(4)一元一次不等式,y1≤kx+b≤y2(y1,y2都是已知数,且y1<

y2)的解集就是直线y=kx+b上满足y1≤y≤y2那条线段所对应的自变量的取值范围。

(5)一元一次不等式kx+b≤y0(或kx+b≥y0)(y0为已知数)的解集就是直线y=kx+b上满足y≤y0(或y≥y0)那条射线所对应的自变量的取范围。

8、确定正比例函数与一次函数的解析式应具备的条件

(1)由于比例函数y=kx(k≠0)中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。

(2)一次函数y=kx+b中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点,或两对x,y的值。

9、反比例函数

(1)反比例函数及其图象

如果

那么,y是x的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象

(2)反比例函数的性质

当K>

0时,图象的两个分支分别在一、三象限内,在每个象限内,y随x的增大而减小;

当K<

0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。

(3)由于比例函数

中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。

补充回答:

三角形相似

相似三角形的判定方法:

(1)若DE∥BC(A型和X型)则△ADE∽△ABC

(2)射影定理若CD为Rt△ABC斜边上的高(双直角图形)

解直角三角形

不知道是否是你所需要的...

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1