上海市初中数学命题与证明的综合练习Word格式.docx
《上海市初中数学命题与证明的综合练习Word格式.docx》由会员分享,可在线阅读,更多相关《上海市初中数学命题与证明的综合练习Word格式.docx(15页珍藏版)》请在冰豆网上搜索。
B.只有两直线平行的情况下,才有同位角相等,故B选项错误;
C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;
D.相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D选项错误,
故选C.
本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.
3.下列命题中真命题是( )
A.
=(
)2一定成立
B.位似图形不可能全等
C.正多边形都是轴对称图形
D.圆锥的主视图一定是等边三角形
【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.
【详解】A、
)2,当a<0时不成立,假命题;
B、位似图形在位似比为1时全等,假命题;
C、正多边形都是轴对称图形,真命题;
D、圆锥的主视图不一定是等边三角形,假命题,
【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.
4.下列命题中,是假命题的是()
A.对顶角相等B.同位角相等
C.同角的余角相等D.全等三角形的面积相等
【答案】B
根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.
A.对顶角相等是真命题,故该选项不合题意,
B.两直线平行,同位角相等,故该选项是假命题,符合题意,
C.同角的余角相等是真命题,故该选项不合题意,
D.全等三角形的面积相等是真命题,故该选项不合题意.
B.
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.下列命题是真命题的是( )
A.内错角相等
B.平面内,过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过一点有且只有一条直线与已知直线平行
命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.
A、内错角相等,是假命题,故此选项不合题意;
B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;
C、相等的角是对顶角,是假命题,故此选项不合题意;
D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;
此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
6.下列命题是真命题的个数是().
①64的平方根是
;
②
,则
③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
④三角形三边的垂直平分线交于一点.
A.1个B.2个C.3个D.4个
分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.
,正确,是真命题;
,则不一定
,可能
故错误;
③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
是真命题;
④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;
C
考核知识点:
命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.
7.下列命题:
①两条直线被第三条直线所截,同位角相等;
②两点之间,线段最短;
③相等的角是对顶角;
④直角三角形的两个锐角互余;
⑤同角或等角的补角相等.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
解:
命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;
命题②两点之间,线段最短,正确,为真命题;
命题③相等的角是对顶角,错误,为假命题;
命题④直角三角形的两个锐角互余,正确,为真命题;
命题⑤同角或等角的补角相等,正确,为真命题,
故答案选B.
考点:
命题与定理.
8.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
根据等弧或垂径定理,正多边形的性质一一判断即可;
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
C.
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.下列命题是真命题的是( )
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
正确的命题是真命题,根据定义判断即可.
A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;
B、一组数据的众数可以不唯一,故正确;
C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D、已知a、b、c是Rt△ABC的三条边,当∠C=90°
时,则a2+b2=c2,故此选项错误;
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.
10.下列各命题的逆命题成立的是()
A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等
C.两直线平行,同位角相等D.如果两个角都是45°
,那么这两个角相等
试题分析:
首先写出各个命题的逆命题,再进一步判断真假.
A、逆命题是三个角对应相等的两个三角形全等,错误;
B、绝对值相等的两个数相等,错误;
C、同位角相等,两条直线平行,正确;
D、相等的两个角都是45°
,错误.
11.交换下列命题的题设和结论,得到的新命题是假命题的是( )
A.两直线平行,内错角相等;
B.相等的角是对顶角;
C.所有的直角都是相等的;
D.若a=b,则a-1=b-1.
分析:
写出原命题的逆命题,根据相关的性质、定义判断即可.
详解:
交换命题A的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题;
交换命题B的题设和结论,得到的新命题是对顶角相等,是真命题;
交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题;
交换命题D的题设和结论,得到的新命题是若a﹣1=b﹣1,则a=b,是真命题.
故选C.
点睛:
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
12.下列命题中,真命题的是( )
A.两条直线被第三条直线,同位角相等
B.若a⊥b,b⊥c,则a⊥c
C.点p(x,y),若y=0,则点P在x轴上
D.若
=a,则a=﹣l
根据平行线的性质对A进行判断;
根据平行线的判定方法对B进行判断;
根据x轴上点的坐标特征对C进行判断;
根据二次根式的性质对D进行判断.
A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;
B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;
C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;
D、若
=a,则a=0或a=1,所以D选项为假命题.
本题考查了命题与定理:
命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
13.39.下列命题中,是假命题的是()
A.同旁内角互补
B.对顶角相等
C.直角的补角仍然是直角
D.两点之间,线段最短
【答案】A
【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.
14.下列命题中,假命题是()
A.平行四边形的对角线互相垂直平分
B.矩形的对角线相等
C.菱形的面积等于两条对角线乘积的一半
D.对角线相等的菱形是正方形
不正确的命题是假命题,根据定义依次判断即可.
A.平行四边形的对角线互相平分,故是假命题;
B.矩形的对角线相等,故是真命题;
C.菱形的面积等于两条对角线乘积的一半,故是真命题;
D.对角线相等的菱形是正方形,故是真命题,
A.
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
15.下列命题中是假命题的是()
A.一个三角形中至少有两个锐角
B.在同一平面内,垂直于同一直线的两条直线平行
C.同角的补角相等
D.如果a为实数,那么
A.一个三角形中至少有两个锐角,是真命题;
B.在同一平面内,垂直于同一直线的两条直线平行,是真命题;
C.同角的补角相等,是真命题;
D.如果a为实数,那么|a|>
0,是假命题;
如:
0是实数,|0|=0,故D是假命题;
D.
16.下列命题是假命题的是()
A.有一个角是60°
的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.线段垂直平分线上的点到线段两端的距离相等
根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.
A.正确;
有一个角是60°
的等腰三角形是等边三角形;
B.正确.等边三角形有3条对称轴;
C.错误,SSA无法判断两个三角形全等;
D.正确.线段垂直平分线上的点到线段两端的距离相等.
本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
17.下列选项中,能说明命题“若
”是假命题的反例是( )
,
B.
D.
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.
A.当
时,
<
,则此选项不是假命题的反例;
B.当
>
C.当
D.当
,则此选项是假命题的反例,
.
本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.
18.已知:
在
中,
,求证:
若用反证法来证明这个结论,可以假设
C.
反证法的步骤:
1、假设命题反面成立;
2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;
3、得出假设命题不成立是错误的,即所求证命题成立.
已知:
由“等角对等边”可得AB=AC,这与已知矛盾,所以
故选C
本题考核知识点:
反证法.解题关键点:
理解反证法的一般步骤.
19.下列四个命题:
①对顶角相等;
②内错角相等;
③平行于同一条直线的两条直线互相平行;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是(
)
①符合对顶角的性质,故本小题正确;
②两直线平行,内错角相等,故本小题错误;
③符合平行线的判定定理,故本小题正确;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.
故选B.
20.下列语句中真命题有()①点到直线的垂线段叫做点到直线的距离;
③两点之间线段最短;
④过一点有且只有一条直线与已知直线平行;
⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.
A.5个B.4个C.3个D.2个
利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.
解:
①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;
②两直线平行,内错角相等,故错误,是假命题;
③两点之间线段最短,正确,是真命题;
④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;
⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.
真命题有2个,故选D.
本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.