高中物理奥赛解题方法七 对称法.docx

上传人:b****2 文档编号:2089067 上传时间:2022-10-26 格式:DOCX 页数:17 大小:185.03KB
下载 相关 举报
高中物理奥赛解题方法七 对称法.docx_第1页
第1页 / 共17页
高中物理奥赛解题方法七 对称法.docx_第2页
第2页 / 共17页
高中物理奥赛解题方法七 对称法.docx_第3页
第3页 / 共17页
高中物理奥赛解题方法七 对称法.docx_第4页
第4页 / 共17页
高中物理奥赛解题方法七 对称法.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

高中物理奥赛解题方法七 对称法.docx

《高中物理奥赛解题方法七 对称法.docx》由会员分享,可在线阅读,更多相关《高中物理奥赛解题方法七 对称法.docx(17页珍藏版)》请在冰豆网上搜索。

高中物理奥赛解题方法七 对称法.docx

高中物理奥赛解题方法七对称法

七、对称法

方法简介

由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。

应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。

利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。

赛题精析

例1:

沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A,抛出点离水平地面的高度为h,距离墙壁的水平距离为s,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s,如图7—1所示。

求小球抛出时的初速度。

解析:

因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A′点水平抛出所做的运动。

根据平抛运动的规律:

因为抛出点到落地点的距离为3s,抛出点的高度为h,代入后可解得:

v0=x=3s

例2:

如图7—2所示,在水平面上,有两个竖直光滑墙壁A和B,间距为d,一个小球以初速度v0从两墙正中间的O点斜向上抛出,与A和B各发生一次碰撞后正好落回抛出点O,求小球的抛射角θ。

解析:

小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。

物体跟墙A碰撞前后的运动相当于从O′点开始的斜上抛运动,与B墙碰后落于O点相当于落到O″点,其中O、O′关于A墙对称,O、O″对于B墙对称,如图7—2—甲所示,于是有:

,落地时

代入可解得:

sin2θ=

所以,抛射角θ=arcsin

例3:

A、B、C三只猎犬站立的位置构成一个边长为a的正三角形,每只猎犬追捕猎物的速度均为v,A犬想追捕B犬,B犬想追捕C犬,C犬想追捕A犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物?

解析:

以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。

由题意作图7—3,设顶点到中心的距离为s,则由已知条件得:

s=a

由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为:

v′=vcos30°=v

由此可知三角形收缩到中心的时间为:

t==

(此题也可以用递推法求解,读者可自己试解。

例4:

如图7—4所示,两个同心圆代表一个圆形槽,质量为m,内外半径几乎同为R。

槽内A、B两处分别放有一个质量也为m的小球,AB间的距离为槽的直径。

不计一切摩擦。

现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB方向的速度v,试求两小球第一次相距R时,槽中心的速度v0。

解析:

在水平面参考系中建立水平方向的x轴和y轴。

由系统的对称性可知中心或者说槽整体将仅在x轴方向上运动。

设槽中心沿x轴正方向运动的速度变为v0,两小球相对槽心做角速度大小为ω的圆周运动,A球处于如图7—4—甲所示的位置时,相对水平面的两个分速度为:

vx=ωRsinθ+v0①

vy=-ωRcosθ②

B球的运动与A球的运动是对称的。

因系统在x轴方向上动量守恒、机械能也守恒,因此:

mv0+2mvx=2mv③

2×m(+)+m=2×mv2④

将①、②式代入③、④式得:

3v0=2v-2ωRsinθ

ω2R2+2ωRv0sinθ++=v2

由此解得:

v0=(1-)v

当两球间距离为R时,θ=30°,代入可解得槽中心运动的速度为:

v0=(1-)v

例5:

用一轻质弹簧把两块质量各为M和m的木板连接起来,放在水平上,如图7—5所示,问必须在上面木板上施加多大的压力F,才能使撤去此力后,上板跳起来恰好使下板离地?

解析:

此题可用能量守恒的观点求解,但过程较繁,而用弹簧形变的“对称性”求解就显得简洁明了。

若用拉力F作用在m上,欲使M离地,拉力F至少应为:

F=(M+m)g

根据弹簧的拉伸和压缩过程具有的对称性,故要产生上述效果,作用在m上的向下的压力应为F=(M+m)g。

例6:

如图7—6所示,长为l的两块相同的均匀长方形砖块A和B叠放在一起,A砖相对于B砖伸出,B砖放在水平桌面上,砖的端面与桌面平行。

为保持两砖不翻倒,B砖伸出桌面的最大长度是多少?

解析:

此题可用力矩平衡求解,但用对称法求解,会直观简洁。

把A砖右端伸出B端的截去,补在B砖的右端,则变成图7—6—甲所示的对称形状。

伸出最多时对称轴应恰好通过桌边。

所以:

l-x=x+

解得B砖右端伸出桌面的最大长度为:

x=l。

例7:

如图7—7所示,OABC是一张水平放置的桌球台面。

取OA为x轴,OC为y轴,P是红球,坐标为(x,y),Q是白球,坐标为(x1,y1)(图中未画出Q球在台面上的位置)。

已知OA=BC=25dm,AB=OC=12dm。

若P球的坐标为:

x=10dm,y=8dm处,问Q球的位置在什么范围内时,可使击出的Q球顺次与AB、BC、CO和OA四壁碰撞反弹,最后击中P球?

解析:

由于弹性碰撞反弹服从的规律与光线的反射定律相同,所以作P点对OA壁的镜像P1,P1对CO壁的镜像P2,P2对BC壁的镜像P3和P3对AB壁的镜像P4,则只需瞄准P4点击出Q球,Q球在AB壁上D点反弹后射向P3,又在BC壁上E点反弹后射向P2,依次类推,最后再经F,G二点的反弹击中P点,如图7—7—甲所示。

但是,若反弹点E离B点太近,Q球从E点反弹后EP2线与CO的交点,可能不在CO壁的范围内而在CO的延长线上,这时Q球就无法击中CO壁(而击到OA壁上),不符合题目要求,所以,Q球能够最后按题目要求击中P球的条件是:

反弹点D、E、F、和G一定要在相应的台壁范围之内。

已知P点的坐标为(10,8),由此可知,各个镜像点的坐标分别为:

P1(10,-8),P2(-10,-8),P3(-10,32),P4(60,32)

设Q点的坐标为(x′,y′);直线QP4的方程为:

Y-y′=(X-x′)①

D点在此直线上,XD=25,由上式得:

YD=(800-32x′+35y′)②

直线DP3的方程为:

Y-YD=-(X-xD)③

E点在此直线上,YE=12,由此式及②式得:

xE=25-(1-80+20x′-35y′)④

直线EP2的方程为:

Y-YE=-(X-xE)

F点在此直线上,XF=0,所以:

YF=12-(88-2x′+y′)

最后,直线FP1的方程为:

Y-YF=-(X-xF)⑤

G点在此直线上,YG=0,所以:

XG=(-160+8x′-10y′)⑥

反弹点位于相应台壁上的条件为:

将③、④、⑤和⑥式代入⑦,除肯定满足无需讨论的不等式外,Q球按题目要求击中P球的条件成为:

上面共两个条件,作直线l1:

35Y=20X-80及l2:

5Y=4X-80

如图7—7—乙所示,若Q球位于l2下方的三角形D0AH0内,即可同时满足⑧、⑨两式的条件,瞄准P4击出,可按题目要求次序反弹后击中P球,三角形D0AH0三个顶点的坐标如图7—7—乙所示。

例8:

一无限长均匀带电细线弯成如图7—8所示的平面图形,其中AB是半径为R的半圆孤,AA′平行于BB′,试求圆心O处的电场强度。

解析:

如图7—8甲所示,左上1/4圆弧内的线元ΔL1与右下直线上的线元ΔL3具有角元Δθ对称关系。

ΔL1电荷与ΔL3电荷在O点的场强ΔE1与ΔE3方向相反,若它们的大小也相等,则左上与右下线元电场强度成对抵消,可得圆心处场强为零。

设电荷线密度为常量λ,因Δθ很小,ΔL1电荷与ΔL3电荷可看做点电荷,其带电量:

q1=RΔθλ,q2=ΔL3λ

当Δθ很小时,有:

q2=

又因为ΔE1=K,ΔE2=K=K=K,与ΔE1的大小相同,且ΔE1与ΔE2方向相反。

所以圆心O处的电场强度为零。

例9:

如图7—9所示,半径为R的半圆形绝缘线上、下1/4圆弧上分别均匀带电+q和-q,求圆心处O的场强。

解析:

因圆弧均匀带电,在圆弧上任取一个微小线元,由于带电线元很小,可以看成点电荷。

用点电荷场强公式表示它在圆心处的分场强,再应用叠加原理计算出合场强。

由对称性分别求出合场强的方向再求出其值。

在带正电的圆孤上取一微小线元,由于圆弧均匀带电,因而线密度λ=。

在带负电的圆弧上必定存在着一个与之对称的线元,两者产生的场强如图7—9甲所示。

显然,两者大小相等,其方向分别与x轴的正、负方向成θ角,且在x轴方向上分量相等。

由于很小,可以认为是点电荷,两线元在O点的场强为ΔE=2sinθ=,方向沿y轴的负方向,所以O点的合场强应对ΔE求和。

即:

E=ΣΔE=Σ=ΣΔh=R=

例10:

电荷q均匀分布在半球面ACB上,球面的半径为R,CD为通过半球顶点C与球心O的轴线,如图7—10所示,P、Q为CD轴线上在O点两侧,离O点距离相等的两点,已知P点的电势为UP,试求Q点的电势UQ。

解析:

可以设想一个均匀带电、带电量也是q的右半球,与题中所给的左半球组成一个完整的均匀带电球面,根据对称性来解。

由对称性可知,右半球在P点的电势等于左半球在Q点的电势UQ。

即:

=UQ

所以有:

UP+UQ=UP+

而UP+正是两个半球在P点的电势,因为球面均匀带电,所以UP+=K

由此解得Q点的电势:

UQ=-UP。

例11:

如图7—11所示,三根等长的细绝缘棒连接成等边三角形,A点为三角形的内心,B点与三角形共面且与A相对ac棒对称,三棒带有均匀分布的电荷,此时测得A、B两点的电势各为UA、UB,现将ac棒取走,而ab、bc棒的电荷分布不变,求这时A、B两点的电势、。

解析:

ab、bc、ac三根棒中的电荷对称分布,各自对A点电势的贡献相同,ac棒对B点电势的贡献和对A点电势的贡献相同,而ab、bc棒对B点电势的贡献也相同。

设ab、bc、ac棒各自在A点的电势为U1,ab、bc棒在B点的电势为U2。

由对称性知,ac棒在B点的电势为U1。

由电势叠加原理得:

3U1=UA①

U1+2U2=UB②

由①、②两式得:

U1=,U2===

将ac棒取走后,A、B两点的电势分别为:

=UA-U1=UA

=UB-U2=+

例12:

如图7—12所示为一块很大的接地导体板,在与导体板相距为d的A处放有带电量为-q的点电荷。

(1)试求板上感应电荷在导体内P点产生的电场强度;

(2)试求感应电荷在导体外P′点产生的电场强度(P与P′点对导体板右表面是对称的);

(3)在本题情形,试分析证明导体表面附近的电场强度的方向与导体表面垂直;

(4)试求导体上的感应电荷对点电荷-q的作用力;

(5)若在切断导体板与地的连线后,再将+Q电荷置于导体板上,试说明这部分电荷在导体板上如何分布可达到静电平衡(略去边缘效应)。

解析:

在讨论一个点电荷受到面电荷(如导体表面的感应电荷)的作用时,根据“镜像法”可以设想一个“像电荷”,并使它的电场可以代替面电荷的电场,从而把问题大大简化。

(1)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1