高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx

上传人:b****1 文档编号:2080720 上传时间:2022-10-26 格式:DOCX 页数:21 大小:204.38KB
下载 相关 举报
高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx_第1页
第1页 / 共21页
高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx_第2页
第2页 / 共21页
高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx_第3页
第3页 / 共21页
高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx_第4页
第4页 / 共21页
高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx

《高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx》由会员分享,可在线阅读,更多相关《高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx(21页珍藏版)》请在冰豆网上搜索。

高中数学《函数模型的应用举例》教案1 新人教A版必修1.docx

高中数学《函数模型的应用举例》教案1新人教A版必修1

2019-2020年高中数学《函数模型的应用举例》教案1新人教A版必修1

教学分析

函数基本模型的应用是本章的重点内容之一.教科书用4个例题作示范,并配备了较多的实际问题让学生进行练习.在4个例题中,分别介绍了分段函数、对数函数、二次函数的应用.

教科书中还渗透了函数拟合的基本思想.通过本节学习让学生进一步熟练函数基本模型的应用,提高学生解决实际问题的能力.

三维目标

1.培养学生由实际问题转化为数学问题的建模能力,即根据实际问题进行信息综合列出函数解析式.

2.会利用函数图象性质对函数解析式进行处理得出数学结论,并根据数学结论解决实际问题.

3.通过学习函数基本模型的应用,体会实践与理论的关系,初步向学生渗透理论与实践的辩证关系.

重点难点

根据实际问题分析建立数学模型和根据实际问题拟合判断数学模型,并根据数学模型解决实际问题.

课时安排

2课时

教学过程

第1课时函数模型的应用实例

导入新课

思路1.(情景导入)

在课本第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.

与之相应的图中话道出了其中的意蕴:

对于一个种群的数量,如果在理想状态(如没有天敌、食物充足等)下,那么它将呈指数增长;但在自然状态下,种群数量一般符合对数增长模型.

上一节我们学习了不同的函数模型的增长差异,这一节我们进一步讨论不同函数模型的应用.

思路2.(直接导入)

上一节我们学习了不同的函数模型的增长差异,这一节我们进一步讨论不同函数模型的应用.

推进新课

新知探究

提出问题

①我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.

设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x).

②A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距城市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.

把月供电总费用y表示成x的函数,并求定义域.

③分析以上实例属于那种函数模型.

讨论结果:

①f(x)=5x(15≤x≤40).

g(x)=

②y=5x2+(100—x)2(10≤x≤90);

③分别属于一次函数模型、二次函数模型、分段函数模型.

应用示例

思路1

例1一辆汽车在某段路程中的行驶速率与时间的关系如图所示.

(1)求图3-2-2-1中阴影部分的面积,并说明所求面积的实际含义;

(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为xxkm,试建立行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图象.

图3-2-2-1

活动:

学生先思考或讨论,再回答.教师根据实际,可以提示引导:

图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不断变化,汽车里程表读数skm与时间th的函数为分段函数.

解:

(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.

阴影部分的面积表示汽车在这5小时内行驶的路程为360km.

(2)根据图,有s=

这个函数的图象如图3-2-2-2所示.

图3-2-2-2

变式训练

xx深圳高三模拟,理19电信局为了满足客户不同需要,设有A、B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如下图(图3-2-2-3)所示(其中MN∥CD).

(1)分别求出方案A、B应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);

(2)假如你是一位电信局推销人员,你是如何帮助客户选择A、B两种优惠方案?

并说明理由.

图3-2-2-3

解:

(1)先列出两种优惠方案所对应的函数解析式:

f(x)=g(x)=

(2)当f(x)=g(x)时,x-10=50,

∴x=200.∴当客户通话时间为200分钟时,两种方案均可;

当客户通话时间为0≤x<200分钟,g(x)>f(x),故选择方案A;

当客户通话时间为x>200分钟时,g(x)

点评:

在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.

例2人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766~1834)就提出了自然状态下的人口增长模型:

y=y0ert,

其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.

下表是1950~1959年我国的人口数据资料:

年份

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

人数/万人

55196

56300

57482

58796

60266

61456

62828

64563

65994

67207

(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;

(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?

解:

(1)设1951~1959年的人口增长率分别为r1,r2,r3,…,r9.

由55196(1+r1)=56300,

可得1951年的人口增长率为r1≈0.0200.

同理,可得r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,

r8≈0.0222,r9≈0.0184.

于是,1950~1959年期间,我国人口的年平均增长率为

r=(r1+r2+…+r9)÷9≈0.0221.

令y0=55196,则我国在1951~1959年期间的人口增长模型为

y=55196e0.0221t,t∈N.

根据表中的数据作出散点图,并作出函数y=55196e0.0221t(t∈N)的图象(图3-2-2-4).

图3-2-2-4

由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.

(2)将y=130000代入y=55196e0.0221t,

由计算器可得t≈38.76.

所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.

变式训练

一种放射性元素,最初的质量为500g,按每年10%衰减.

(1)求t年后,这种放射性元素质量ω的表达式;

(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg2=0.3010,lg3=0.4771)

解:

(1)最初的质量为500g.

经过1年后,ω=500(1-10%)=500×0.91;

经过2年后,ω=500×0.9(1-10%)=500×0.92;

由此推知,t年后,ω=500×0.9t.

(2)解方程500×0.9t=250,则0.9t=0.5,

所以t==≈6.6(年),

即这种放射性元素的半衰期约为6.6年.

知能训练

某电器公司生产A型电脑.1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益.

(1)求1997年每台A型电脑的生产成本;

(2)以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:

=2.236,=2.449)

活动:

学生先思考或讨论,再回答.教师根据实际,可以提示引导.

出厂价=单位商品的成本+单位商品的利润.

解:

(1)设1997年每台电脑的生产成本为x元,依题意,得

x(1+50%)=5000×(1+20%)×80%,解得x=3200(元).

(2)设1993年至1997年间每年平均生产成本降低的百分率为y,则依题意,得5000(1-y)4=3200,

解得y1=1-,y2=1+(舍去).

所以y=1-≈0.11=11%,

即1997年每台电脑的生产成本为3200元,1993年至1997年生产成本平均每年降低11%.

点评:

函数与方程的应用是本章的重点,请同学们体会它们的关系.

拓展提升

某家电企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调、彩电、冰箱共360台,且冰箱至少生产60台.已知生产这些家电产品每台所需工时和每台产值如下表:

家电名称

空调

彩电

冰箱

每台所需工时

每台产值(千元)

4

3

2

问每周应生产空调、彩电、冰箱各多少台,才能使周产值最高?

最高产值是多少?

(以千元为单位)

解:

设每周生产空调、彩电、冰箱分别为x台、y台、z台,每周产值为f千元,

则f=4x+3y+2z,

其中

由①②可得y=360-3x,z=2x,

代入③得则有30≤x≤120.

故f=4x+3(360-3x)+2·2x=1080-x,

当x=30时,fmax=1080-30=1050.

此时y=360-3x=270,z=2x=60.

答:

每周应生产空调30台,彩电270台,冰箱60台,才能使每周产值最高,最高产值为1050千元.

点评:

函数方程不等式有着密切的关系,它们相互转化组成一个有机的整体,请同学们借助上面的实例细心体会.

课堂小结

本节重点学习了函数模型的实例应用,包括一次函数模型、二次函数模型、分段函数模型等;另外还应关注函数方程不等式之间的相互关系.

活动:

学生先思考或讨论,再回答.教师提示、点拨,及时评价.

引导方法:

从基本知识和基本技能两方面来总结.

作业

课本P107习题3.2A组5、6.

设计感想

本节设计从有趣的故事开始,让学生从故事中体会函数模型的选择,然后通过几个实例介绍常用函数模型.接着通过最新题型训练学生由图表转化为函数解析式的能力,从而解决实际问题,本节的每个例题的素材都是贴近现代生活,学生非常感兴趣的问题,很容易引起学生的共鸣.

 

2019-2020年高中数学《函数模型的应用举例》教案2新人教A版必修1

导入新课

思路1.(事例导入)

一辆汽车在水平的公路上匀加速行驶,初速度为v0,加速度为a,那么经过t小时它的速度为多少?

在这t小时中经过的位移是多少?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1