高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx

上传人:b****6 文档编号:20742789 上传时间:2023-01-25 格式:DOCX 页数:15 大小:51.19KB
下载 相关 举报
高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx_第1页
第1页 / 共15页
高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx_第2页
第2页 / 共15页
高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx_第3页
第3页 / 共15页
高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx_第4页
第4页 / 共15页
高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx

《高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx》由会员分享,可在线阅读,更多相关《高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx(15页珍藏版)》请在冰豆网上搜索。

高考数学一轮复习 101 分类计数原理分步计数原理教案Word格式.docx

105

电话号码是六位数字时,该城市可安装电话9×

105部,同理升为七位时为9×

106.∴可增加的电话部数是9×

106-9×

105=81×

105.

D

4.72的正约数(包括1和72)共有__________个.

72=23×

32.

∴2m·

3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.

m的取法有4种,n的取法有3种,由分步计数原理共3×

4个.

12

5.(xx年春季北京,13)从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有_____________个,其中不同的偶函数共有_____________个.(用数字作答)

一个二次函数对应着a、b、c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步计数原理,知共有二次函数3×

2=18个.

若二次函数为偶函数,则b=0.

同上共有3×

2=6个.

186

●典例剖析

【例1】电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?

解:

分两类:

(1)幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有30×

29×

20=17400种结果;

(2)幸运之星在乙箱中抽,同理有20×

19×

30=11400种结果.因此共有17400+11400=28800种不同结果.

评述:

在综合运用两个原理时,既要合理分类,又要合理分步,一般情况是先分类再分步.

思考讨论

本题为什么要先分类?

由于幸运之星在哪个信箱产生对幸运伙伴的产生有影响,分步计数原理中步与步间要独立.

【例2】从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?

和为11的数共有5组:

1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,

所以子集的个数为2×

2=25=32.

解本题的关键是找出和为11的5组数,然后再用分步计数原理求解.

深化拓展

上例中选出5个数组成子集改为选出4个数呢?

24=80个.

【例3】(xx年新课程卷)某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答)

解法一:

从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求.

(1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N1=4×

1=48种;

(2)③与⑤同色,则②④或⑥④同色,所以共有N2=4×

(3)②与④且③与⑥同色,则共有N3=4×

1=24种.

所以,共有N=N1+N2+N3=48+48+24=120种.

解法二:

记颜色为A、B、C、D四色,先安排1、2、3有A种不同的栽法,不妨设1、2、3已分别栽种A、B、C,则4、5、6栽种方法共5种,由以下树状图清晰可见.

根据分步计数原理,不同栽种方法有N=A×

5=120.

120

解法一是常规解法,解法二安排4、5、6时又用了分类和列举的方法.

●闯关训练

夯实基础

1.(xx年全国,文5)从长度分别为1、2、3、4的四条线段中,任取三条的不同取法共有n种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m,则等于

A.0B.C.D.

n=C=4,在“1、2、3、4”这四条线段中,由三角形的性质“两边之和大于第三边,两边之差小于第三边”知可组成三角形的有“2、3、4”,m=1.∴=.

2.(xx年黄冈检测题)某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入节目单中,那么不同的插法种数为

A.504B.210C.336D.120

三个新节目一个一个插入节目单中,分别有7、8、9种方法.

∴插法种数为7×

9=504或A÷

A=504.

A

3.从1到10的正整数中,任意抽取两个相加,所得和为奇数的不同情形有__________种.

当且仅当偶数加上奇数后和为奇数,从而不同情形有5×

5=25种.

25

4.从图中的12个点中任取3个点作为一组,其中可构成三角形的组数是

A.208B.204C.200D.196

在12个点中任取3个点的组合数为C,在同一直线上的3点的组数为20,则可构成三角形的组数为C-20=200.

5.4棵柳树和4棵杨树栽成一行,柳树、杨树逐一相间的栽法有_____________种.

2A·

A=1152种.

1152

6.(xx年上海)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2菜2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要不同的素菜品种_____________种.(结果用数值表示)

设素菜n种,则C·

C≥200n(n-1)≥40,所以n的最小值为7.

7

培养能力

7.(xx年全国)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种.(以数字作答)

依次染①、②、③、④、⑤.故有C·

C=72种.

72

8.(理)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子.现将这五个球投放入这五个盒子内,要求每个盒子内投放一球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法有多少种?

分析:

五个球分别投放到五个盒子内,恰好有两个球的编号与盒子的编号相同,则其他三个球必不能投放到与球的编号相同的盒子内,此时,这三个球与对应的三个盒子,就成了受限的特殊元素与特殊位置.

先在五个球中任选两个球投放到与球编号相同的盒子内,有C种;

剩下的三个球,不失一般性,不妨设编号为3,4,5,投放3号球的方法数为C,则投放4,5号球的方法只有一种,根据分步计数原理共有C·

C=20种.

本题投放球有两种方法,一种是投入到与编号相同的盒子内,另一种是投入到与编号不同的盒子内,故应分步完成.

(文)在所有两位数中,个位数字大于十位数字的两位数共有多少个?

在0~9这10个数字中,按照题目要求组成的两位数中,个位数字不能为0和1,十位数字不能为0和9.也就是说组成两位数的数字可按个位分类或按十位分类来计算.

按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个.

则共有1+2+3+4+…+7+8=36(个).

按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.

则共有8+7+6+5+4+3+2+1=36(个).

在具体分类或分步时,常遇到困难,要多练习,多积累经验,掌握思维方法,逐步做到恰当分类,合理分步.

9.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?

又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?

(1)5名学生中任一名均可报其中的任一项,因此每个学生都有4种报名方法,5名学生都报了项目才能算完成这一事件.故报名方法种数为4×

4=45种.

(2)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有5种.故有n=5×

5×

5=54种.

探究创新

10.三边长均为整数,且最大边长为11的三角形的个数是多少?

设较小的两边长为x、y且x≤y,

则x≤y≤11,

x+y>

11,

x、y∈N*.

当x=1时,y=11;

当x=2时,y=10,11;

当x=3时,y=9,10,11;

当x=4时,y=8,9,10,11;

当x=5时,y=7,8,9,10,11;

当x=6时,y=6,7,8,9,10,11;

当x=7时,y=7,8,9,10,11;

……

当x=11时,y=11.

所以不同三角形的个数为

1+2+3+4+5+6+5+4+3+2+1=36.

本题关键是列出约束条件,然后寻找x=1,2,…,11时,y的取值个数的规律,再用分类计数原理求解.

●思悟小结

1.分类计数原理和分步计数原理是解决排列、组合问题的理论基础.这两个原理的本质区别在于分类与分步,分类用分类计数原理,分步用分步计数原理.

2.元素能重复的问题往往用计数原理.

●教师下载中心

教学点睛

弄清两个原理的区别与联系,是正确使用这两个原理的前提和条件.这两个原理都是指完成一件事而言的.其区别在于:

(1)分类计数原理是“分类”,分步计数原理是“分步”;

(2)分类计数原理中每类办法中的每一种方法都能独立完成一件事,分步计数原理中每步中每种方法都只能做这件事的一步,不能独立完成这件事.

拓展题例

【例1】关于正整数2160,求:

(1)它有多少个不同的正因数?

(2)它的所有正因数的和是多少?

(1)∵N=2160=24×

33×

5,

∴2160的正因数为P=2α×

3β×

5γ,

其中α=0,1,2,3,4,β=0,1,2,3,γ=0,1.

∴2160的正因数共有5×

2=40个.

(2)式子(20+21+22+23+24)×

(30+31+32+33)×

(50+51)的展开式就是40个正因数.

∴正因数之和为31×

40×

6=7440.

【例2】球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分,欲将此十球中的4球击入袋中,但总分不低于5分,击球方法有几种?

设击入黄球x个,红球y个符合要求,

则有x+y=4,

2x+y≥5(x、y∈N),得1≤x≤4.

相应每组解(x,y),击球方法数分别为CC,CC,CC,CC.

共有不同击球方法数为CC+CC+CC+CC=195.

2019-2020年高考数学一轮复习10.2排列教案

1.排列的概念:

从n个不同元素中任取m个元素,按照一定的次序排成一列,叫做从n个不同元素中取出m个元素的一个排列.排列的个数叫做从n个不同元素中取出m个元素的排列数,用A表示.

2.排列数公式:

从n个不同元素中任取m个元素的排列的个数A=n(n-1)(n-2)…(n-m+1).

3.附有限制条件的排列

(1)对附有限制条件的排列,思考问题的原则是优先考虑受限制的元素或受限制的位置.

(2)对下列附有限制条件的排列,要掌握基本的思考方法:

元素在某一位置或元素不在某一位置;

元素相邻——捆绑法,即把相邻元素看成一个元素;

元素不相邻——插空法;

比某一数大或比某一数小的问题主要考虑首位或前几位.

(3)对附有限制条件的排列要掌握正向思考问题的方法——直接法;

同时要掌握一些问题的逆向思考问题的方向——间接法.

1.把4名男生和4名女生排成一排,女生要排在一起,不同排法的种数为

A.AB.AAC.AAD.A

按分步计数原理,第一步,将女生看成一个整体,则有A种方法;

第二步,将女生排列,有A种排法.故总共有AA种排法.

2.若2n个学生排成一排的排法数为x,这2n个学生排成前后两排,每排各n个学生的排法数为y,则x、y的关系为

A.x>

yB.x<

yC.x=yD.x=2y

第一种排法数为A,第二种排法数为AA=A,从而x=y.

3.若S=A+A+A+A+…+A,则S的个位数字是

A.8B.5C.3D.0

A=1,A=2,A=6,A=24,而A,A,…,A中个位数字均为0,从而S的个位数字是3.

4.(xx年天津,文16)从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有_____________个.(用数字作答)

其中能被5整除的三位数末位必为0或5.①末位为0的三位数其首次两位从1~5的5个数中任取2个排列而成方法数为A=20,②末位为5的三位数,首位从非0,5的4个数中选1个,有C种挑法,再挑十位,还有C种挑法,

∴合要求的数有C·

C=16种.∴共有20+16=36个合要求的数.

36

本题主要抓住能被5整除的三位数的特征(末位数为0,5),还要注意分类讨论及排数字时对首位非0的限制.

5.若直线Ax+By=0的系数A、B可以从{0,2,3,4,5,6}中取不同的值.这些方程表示不同直线的条数是_____________.

若A=0,表示直线y=0;

若B=0,表示直线x=0;

若A、B从集合中任取两个非零值有A种,

其中2x+4y=0与3x+6y=0,4x+2y=0与6x+3y=0,2x+3y=0与4x+6y=0,3x+2y=0与6x+4y=0同.

所以这些方程表示的直线条数为2+A-4=18.

18

【例1】一条铁路原有m个车站,为适应客运需要,新增加n(n≥1,n∈N*)个车站,因而增加了58种车票(起迄站相同的车票视为相同的车票),问原来这条铁路有几个车站?

现在又有几个车站?

由题设A-A=58,

即n(2m-1+n)=58=2×

29.

(1)若n=2,则2m-1+n=29,m=14;

(2)若n=29,则2m-1+n=2,m=-13,不合题意,舍去;

(3)若n=1,则2m-1+n=58,m=29;

(4)若n=58,则2m-1+n=1,m=-28,不合题意,舍去.

所以原有14个车站,现有16个车站;

或者原有29个车站,现有30个车站.

【例2】从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程ax2+bx+c=0?

其中有实数根的有几个?

剖析:

(1)二次方程要求a不为0,故a只能在1、3、5、7中选,b、c没有限制.

(2)二次方程要有实根,需Δ=b2-4ac≥0,再对c分类讨论.

(1)a只能在1、3、5、7中选一个有A种,b、c可在余下的4个中任取2个,有A种.故可组成二次方程A·

A=48个.

(2)方程要有实根,需Δ=b2-4ac≥0.

c=0,a、b可在1、3、5、7中任取2个,有A种;

c≠0,b只能取5、7,b取5时,a、c只能取1、3,共有A个;

b取7时,a、c可取1、3或1、5,有2A个.故有实根的二次方程共有A+A+2A=18个.

【例3】从0,1,2,3,4中取出不同的3个数字组成一个三位数,所有这些三位数的个位数字的和是多少?

1,2,3,4在个位上出现的次数相等,故(1+2+3+4)·

AA=90.

要考虑0不能作首位这个因素.

从0,1,2,3,4,5,6,7,8,9中取出不同的5个数字组成一个5位偶数.

(1)有多少个这样的数?

(2)所有这些5位数的个位数字的和是多少?

(1)A+CC·

A;

(2)(2+4+6+8)C·

A.

1.5名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有

A.A·

A种B.A·

A种C.A·

A种D.A-4A种

正先排大人,有A种排法,再排小孩,有A种排法(插空法).故有A·

A种不同的排法.

2.(xx年四川模拟题)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有_____________.

1、2、3、4、5组成无重复五位数,大于23145且小于43521的有

(1)形如,后两位只能填5、4,

∴有1种数合要求.

(2)形如,第三位选4或5都满足要求,后两位任选都可.

∴符合要求的数有C·

A=4种.

(3)形如,第二位选4或5,后三位任选,方法数为C·

A=12种.

(4)形如,第二位开始,均可任选,方法数为A=24种.

(5)形如,第二位选1或2,后三位任选,方法数为C·

同理形如,2A=4种,形如,1种.

∴合要求总数为(1+4+12)×

2+24=58种.

可用类似方法算出小于43521的5位数个数与小于等于23145的五位数个数.两数之差即为小于43521且大于23145的五位数个数.

58种

3.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为__________.

根据题意,两端的座位要空着,中间6个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空.故共有A种.这种执果索因的思考方法是处理排列、组合问题常用的方法.

24

4.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有_______个.

形如2×

×

0,3×

1,4×

2,5×

3,6×

4,7×

5,8×

6,9×

7符合条件,共有8A=448个.

448

5.用数字0、1、2、3、4、5组成没有重复数字的四位数,

(1)可组成多少个不同的四位数?

(2)可组成多少个四位偶数?

(3)将

(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?

(1)AA=300或A-A=300(间接法).

(2)A+AAA=156.

(3)千位是1的四位数有A=60个,千位是2,百位是0或1的四位数有2A=24个,

∴第85项是2301.

6.甲、乙、丙、丁、戊5名同学进行某种劳动技术比赛,决出了第1到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:

“很遗憾,你和乙都未拿到冠军.”对乙说:

“你当然不会是最差的.”从这个回答分析,5人的名次排列共可能有多少种不同的情况?

(用数字作答)

本题等价于5人排成一排,甲、乙都不站在排头且乙不站在排尾的排法有多少种.乙的限制最多,故先排乙,有3种情况;

再排甲,也有3种情况;

余下3人有A种排法.故共有3·

A=54种不同的情况.

7.用0、1、2、3、4、5这六个数字组成无重复数字的六位数,其中个位数字小于十位数字的六位数的个数是多少个?

(1)个位数为0,十位数可为1、2、3、4、5,故为A种;

(2)个位数为1,十位数可为2、3、4、5,故为A·

A个;

(3)个位数为2,十位数为3、4、5,故为A·

(4)个位数为3,十位数为4、5,故为A·

(5)个位数为4,十位数为5,故为A·

A个.

所以共有A+A·

A(A+A+A+1)=300个.

8.(理)用1,2,3,4,5排成一个数字不重复的五位数a1a2a3a4a5,满足a1<

a2,a2>

a3,a3<

a4,a4>

a5的五位数有多少个?

因为a2>

a1、a3,a4>

a3、a5,所以a2只能是3、4、5.

(1)若a2=3,则a4=5,a5=4,a1与a3是1或2,这时共有A=2个符合条件的五位数.

(2)若a2=4,则a4=5,a1、a3、a5可以是1、2、3,共有A=6个符合条件的五位数.

(3)若a2=5,则a4=3或4,此时分别与

(1)

(2)情况相同.

所以,满足条件的五位数有2(A+A)=16个.

(文)用0,1,2,3,4,5六个数字组成无重复数字的五位数,求比20314大的数的个数.

比20314大的五位数可分为三类:

第一类:

,4×

,5×

,共3A(个);

第二类:

21×

,23×

,24×

,25×

,共4A(个);

第三类:

203×

,204×

,205×

,除去20314这个数,共3A-1(个).

故比20314大的无重复数字的五位数有3A+4A+3A-1=473(个).

还可以这样考虑:

用0,1,2,3,4,5组成无重复数字的五位数共A个.其中比20314小的有两类:

,1×

,共2A个;

201×

,有A个,与20314相等的有1个,

故比20314大的数共有A-2A-A-1=473(个).

9.有点难度哟!

8个人站成一排,其中A、B、C互不相邻且D、E也互不相邻的排法有多少种?

先排去掉A、B、C外的5个人,有A种,

再排A、B、C3人,有A种.

故有A·

A种(含D、E相邻).

其中D、E相邻的有A·

A种.

∴满足条件的排法种数为A·

A-A·

A=11520.

下述解法少了哪种情况?

先排A、B、C、D、E外的3人,有A种,

再排A、B、C3人,有A种(插空),

最后排D、E2人,有A种(插空).

故排法种数为A·

A=6048.

对带有限制条件的排列问题,要掌握基本的解题思想方法:

(1)直接法:

(2)间接法;

(3)一般先从特殊元素和特殊位置入手.

排列与组合是两类特殊的计数问题,它还有一些较为独特的思考方法,应理解

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1