最新人教版初三数学上册第二十五章 概率初步 全单元教案设计Word格式文档下载.docx
《最新人教版初三数学上册第二十五章 概率初步 全单元教案设计Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《最新人教版初三数学上册第二十五章 概率初步 全单元教案设计Word格式文档下载.docx(24页珍藏版)》请在冰豆网上搜索。
活动二>
指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?
1.通常加热到100°
C时,水沸腾;
2.姚明在罚球线上投篮一次,命中;
3.掷一次骰子,向上的一面是6点;
4.度量三角形的内角和,结果是360°
;
5.经过城市中某一有交通信号灯的路口,遇到红灯;
6.某射击运动员射击一次,命中靶心;
7.太阳东升西落;
8.人离开水可以正常生活100天;
9.正月十五雪打灯;
10.宇宙飞船的速度比飞机快.
教师利用多媒体课件演示问题,使问题情境更具生动性.
学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.
教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.
引领学生经历由实践认识到理性认识再重新认识实践问题的过程,同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.
活动三>
情境1
5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.
情境2
小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.
在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.
学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.
开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.
活动四>
请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.
教师引导学生充分交流,热烈讨论.
随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.
活动五>
李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.
教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.
有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.
活动六>
归纳、小结
布置作业
设计一个摸球游戏,要求对甲乙公平.
学生反思、讨论.学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.
课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.
教学设计说明
现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.
做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.
25.1.2概率
教学目标:
〈一〉知识与技能
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
〈二〉教学思考
让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
〈三〉解决问题
在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.
〈四〉情感态度与价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
【教学重点】在具体情境中了解概率意义.
【教学难点】对频率与概率关系的初步理解
【教具准备】壹元硬币数枚、图钉数枚、多媒体课件
【教学过程】
一、创设情境,引出问题
教师提出问题:
周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.
学生:
抓阄、抽签、猜拳、投硬币,……
教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)
追问,为什么要用抓阄、投硬币的方法呢?
由学生讨论:
这样做公平.能保证小强与小明得到球票的可能性一样大
在学生讨论发言后,教师评价归纳.
用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.
质疑:
那么,这种直觉是否真的是正确的呢?
引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.
说明:
现实中不确定现象是大量存在的,新课标指出:
“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.
二、动手实践,合作探究
1.教师布置试验任务.
(1)明确规则.
把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.
(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..
2.教师巡视学生分组试验情况.
注意:
(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.
3.各组汇报实验结果.
由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.
提出问题:
是不是我们的猜想出了问题?
引导学生分析讨论产生差异的原因.
在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.
解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.
4.全班交流.
把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.
表25-2
抛掷次数
50
100
150
200
250
300
350
400
450
500
“正面向上”的频数
“正面向上”的频率
想一想1(投影出示).观察统计表与统计图,你发现“正面向上”的频率有什么规律?
注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.
想一想2(投影出示)
随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?
在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.
注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.
为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.
其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).
表25-3
试验者
抛掷次数(n)
“正面朝上”次数(m)
“正面向上”频率(m/n)
棣莫弗
2048
1061
0.518
布丰
4040
0.5069
费勒
10000
4979
0.4979
皮尔逊
12000
6019
0.5016
24000
12012
0.5005
通过以上学生亲自动手实践,电脑辅助演示,历史材料展示,让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.
在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.
5.下面我们能否研究一下“反面向上”的频率情况?
学生自然可依照“正面朝上”的研究方法,很容易总结得出:
“反面向上”的频率也相应稳定到0.5.
教师归纳:
(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.
(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.
这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.
三、评价概括,揭示新知
问题1.通过以上大量试验,你对频率有什么新的认识?
有没有发现频率还有其他作用?
学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.
通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.
归纳:
以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):
一般地,在大量重复试验中,如果事件A发生的频率
会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记作P(A)=p.
注意指出:
1.概率是随机事件发生的可能性的大小的数量反映.
2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
想一想(学生交流讨论)
问题2.频率与概率有什么区别与联系?
从定义可以得到二者的联系,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础.当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.
四.练习巩固,发展提高.
学生练习
1.书上P143.练习.1.巩固用频率估计概率的方法.
2.书上P143.练习.2巩固对概率意义的理解.
教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.
五.归纳总结,交流收获:
1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.
2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.
【作业设计】
(1)完成P144习题25.12、4
(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.
【教学设计说明】
这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.
1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.
贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.
2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.
3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.
25.2 用列举法求概率
第1课时 运用直接列举或列表法求概率
学习目标
1.用列举法求较复杂事件的概率.
2.理解“包含两步并且每一步的结果为有限多个情形”的意义.
3.用列表法求概率.
一、情境导入
希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.
二、合作探究
探究点一:
用列表法求概率
【类型一】摸球问题
(2014·
江苏宿迁)一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )
A.
B.
C.
D.
解析:
先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:
1
2
(1,1)
(1,2)
(2,2)
由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:
(1,2),(1,2),(2,2),∴P=
,故选D.
【类型二】学科内综合题
四川甘孜州)从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.
用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:
——
(0,1)
(0,2)
(1,0)
(2,0)
(2,1)
共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是
=
,故答案为
.
方法总结:
用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.
【类型三】学科间综合题
广西柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )
A.0.25B.0.5
C.0.75D.0.95
先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:
灯泡1发光
灯泡1不发光
灯泡2发光
(发光,发光)
(不发光,发光)
灯泡2不发光
(发光,不发光)
(不发光,不发光)
根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P(至少有一个灯泡发光)=
,故选择C.
求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.
【类型四】判断游戏是否公平
湖南怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;
若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?
请说明理由.
(1)直接利用概率定义求解;
(2)先用列表法求出概率,再利用概率判断游戏的公平性.
解:
(1)P(标号是1)=
(2)这个游戏不公平,理由如下:
把游戏可能出现标号的所有可能性(两次标号之
和)列表如下:
第一次和第二次
3
4
5
6
∴P(和为偶数)=
,P(和为奇数)=
,二者不相等,说明游戏不公平.
用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.
三、板书设计
教学反思
教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.
第2课时用树状图求概率
教学目标
1.让学生在具体情境中了解概率的意义,运用画树状图来计算简单事件发生的概率。
2.通过实验获得事件发生的频率,知道大量重复实验时频率可作为事件发生概率的估计值。
3.通过实例进一步丰富对概率的认识,并能解决一些实际问题。
教学重点
让学生在具体情境中了解概率的意义,并运用画树状图来计算简单事件发生的概率。
教学难点
让学生通过实验丰富对概率的认识,并能解决一些实际问题。
教学流程
一、创设情境,让学生在具体情境中体会概率的意义。
请班上王华同学与蒋波同学做掷硬币的游戏。
(游戏规则)任意掷一枚均匀的硬币两次,如果两次朝上的面相同,那么蒋波获胜;
如果两次朝上的面不同,那么王华获胜。
先让同学猜一猜,这游戏公平吗?
二、合作交流,作出合理判断。
活动一:
掷硬币游戏。
1.与同桌做20次上面的掷硬币游戏,记录每次出现的情况。
2.汇总全班同学的记录,完成下表。
可能出现的情况
……
合计
出现的次数
占总次数的百分比
3.根据上面的数据,你认为这个游戏公平吗?
随意掷出一枚均匀的硬币两次,硬币落地后会出现4种结果:
(1)两次都为正面朝上,记作(正,正)。
(2)第一次为正面朝上,第二次为反面朝上,记作(正,反)。
(3)第一次为反面朝上,第二次为正面朝上,记作(反,正)。
(4)两次都为反面朝上,记作(反,反)。
每种结果出现的概率相等,都是
。
即:
P(正,正)=P(正,反)=P(反,正)=P(反,反)=
在上面的游戏中,还有其他的方法帮助我们列出所有可能出现的结果吗?
教师引导学生得出“树状图”表示所有可能出现的结果。
每种结果的概率都是
活动二:
穿衣游戏。
(一名同学实验,其余同学小组讨论,得出答案。
)
陶志明同学春节外出旅游时带了3件上衣(棕色、蓝色、淡黄色各一件)和2条长裤(白色、蓝色各一条)。
问题:
他任意拿出1件上衣和1条长裤穿上,正好是棕色上衣和蓝色长裤的概率是多少?
学生充分讨论,并出示参考解法。
用A、B、C分别代表棕色、蓝色、淡黄色上衣;
用D、E分别代表白色、蓝色长裤。
列出所有可能结果的“树状图”
每种结果出现的概率都相等,因此,陶志明拿出棕色上衣和蓝色长裤的概率是
还有其他方法吗?