小学六年级数学应用题汇总文档格式.docx

上传人:b****6 文档编号:20645592 上传时间:2023-01-24 格式:DOCX 页数:9 大小:23.82KB
下载 相关 举报
小学六年级数学应用题汇总文档格式.docx_第1页
第1页 / 共9页
小学六年级数学应用题汇总文档格式.docx_第2页
第2页 / 共9页
小学六年级数学应用题汇总文档格式.docx_第3页
第3页 / 共9页
小学六年级数学应用题汇总文档格式.docx_第4页
第4页 / 共9页
小学六年级数学应用题汇总文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

小学六年级数学应用题汇总文档格式.docx

《小学六年级数学应用题汇总文档格式.docx》由会员分享,可在线阅读,更多相关《小学六年级数学应用题汇总文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

小学六年级数学应用题汇总文档格式.docx

水速是水流的速度,船只顺水航行的速度是船速与水速之和;

船只逆水航行的速度是船速与水速之差。

  【数量关系】

  (顺水速度+逆水速度)÷

2=船速

  (顺水速度-逆水速度)÷

2=水速

  顺水速=船速×

2-逆水速=逆水速+水速×

2

  逆水速=船速×

2-顺水速=顺水速-水速×

  【解题思路和方法】大多数情况可以直接利用数量关系的公式。

  例1、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

  例2、甲船逆水行360千米需18小时,返回原地需10小时;

乙船逆水行同样一段距离需15小时,返回原地需多少时间?

例3、一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?

工程问题

  工程问题主要研究工作量、工作效率和工作时间三者之间的关系。

这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

  【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

  工作量=工作效率×

工作时间

  工作时间=工作量÷

工作效率

  工作时间=总工作量÷

(甲工作效率+乙工作效率)

  【解题思路和方法】变通后可以利用上述数量关系的公式。

  例1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

  例2、一批零件,甲独做6小时完成,乙独做8小时完成。

现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

例3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。

现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

  例4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。

当打开4个进水管时,需要5小时才能注满水池;

当打开2个进水管时,需要15小时才能注满水池;

现在要用2小时将水池注满,至少要打开多少个进水管?

正反比例问题

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例应用题是正比例意义和解比例等知识的综合运用。

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

反比例应用题是反比例的意义和解比例等知识的综合运用。

  【数量关系】判断正比例或反比例关系是解这类应用题的关键。

许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

  【解题思路和方法】解决这类问题的重要方法是:

把分率(倍数)转化为比,应用比和比例的性质去解应用题。

  正反比例问题与前面讲过的倍比问题基本类似。

  例1、修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

  例2、张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

  例3、孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

按比例分配问题

  所谓按比例分配,就是把一个数按照一定的比分成若干份。

这类题的已知条件一般有两种形式:

一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

  【数量关系】从条件看,已知总量和几个部分量的比;

从问题看,求几个部分量各是多少。

总份数=比的前后项之和

  【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

  例1、学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

  例2、用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。

三条边的长各是多少厘米?

  例3、从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的

,二儿子分总数的

,三儿子分总数的

,并规定不许把羊宰割分,求三个儿子各分多少只羊。

方阵问题

  将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

  

(1)方阵每边人数与四周人数的关系:

  四周人数=(每边人数-1)×

4

  每边人数=四周人数÷

4+1

  

(2)方阵总人数的求法:

  实心方阵:

总人数=每边人数×

每边人数

  空心方阵:

总人数=(最外层每边人数-空心方阵的层数)×

空心方阵的层数×

  内层总人数=最外层总人数-层数×

  (3)若将空心方阵分成四个相等的矩形计算,则:

  总人数=(每边人数-层数)×

层数×

  【解题思路和方法】方阵问题有实心与空心两种。

实心方阵的求法是以每边的数自乘;

空心方阵的变化较多,其解答方法应根据具体情况确定。

  例1、在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

  例2、有一个3层中空方阵,最外边一层有10人,求全方阵的人数。

例3、有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?

  例4、一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?

例5、有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。

这个树林一共有多少棵树?

追及问题

  两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

  追及时间=追及路程÷

(快速-慢速)

  追及路程=(快速-慢速)×

追及时间

  【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

  例1、好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

  例2、小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。

小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

  例3、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。

已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

例4、一辆客车从甲站开往乙站,每小时行48千米;

一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

 例5、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?

  例6、孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。

后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。

求孙亮跑步的速度。

倍比问题

  有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

  总量÷

一个数量=倍数

  另一个数量×

倍数=另一总量

  【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

  例1、100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

例2、今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

例3、凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?

全县16000亩果园共收入多少元?

溶液浓度问题

  在生产和生活中,我们经常会遇到溶液浓度问题。

这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。

例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。

溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。

  溶液=溶剂+溶质

  浓度=溶质÷

溶液×

100%

  【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

  例1、爷爷有16%的糖水50克,

(1)要把它稀释成10%的糖水,需加水多少克?

(2)若要把它变成30%的糖水,需加糖多少克?

  例2、要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?

最值问题

  科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。

这类应用题叫做最值问题。

  【数量关系】一般是求最大值或最小值。

  【解题思路和方法】按照题目的要求,求出最大值或最小值。

  例1、在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?

  例2、在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。

现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?

时钟问题

  就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。

  时钟问题可与追及问题相类比。

  【数量关系】分针的速度是时针的12倍,二者的速度差为

  通常按追及问题来对待,也可以按差倍问题来计算。

  【解题思路和方法】变通为“追及问题”后可以直接利用公式。

  例1、从时针指向4点开始,再经过多少分钟时针正好与分针重合?

  例2、四点和五点之间,时针和分针在什么时候成直角?

  例3、六点与七点之间什么时候时针与分针重合?

列车问题

  这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

  火车过桥:

过桥时间=(车长+桥长)÷

车速

  火车追及:

追及时间=(甲车长+乙车长+距离)÷

(甲车速-乙车速)

  火车相遇:

相遇时间=(甲车长+乙车长+距离)÷

(甲车速+乙车速)

  例1、一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。

这列火车长多少米?

例2、一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?

例3、一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?

  例4、一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?

 例5、一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。

求这列火车的车速和车身长度各是多少?

年龄问题

  这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

  【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

  【解题思路和方法】可以利用“差倍问题”的解题思路和方法。

  ①两个人的年龄差是不变的;

  ②两个人的年龄是同时增加或者同时减少的;

  ③两个人的年龄的倍数是发生变化的。

  常用的计算公式是:

  成倍时小的年龄=大小年龄之差÷

(倍数-1)

  几年前的年龄=小的现年-成倍数时小的年龄

  几年后的年龄=成倍时小的年龄-小的现在年龄

  例1、爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?

明年呢?

例2、母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

  例3、3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 电力水利

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1