九年级数学下册期中易错题测试含答案解析精品教育docWord格式文档下载.docx
《九年级数学下册期中易错题测试含答案解析精品教育docWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《九年级数学下册期中易错题测试含答案解析精品教育docWord格式文档下载.docx(28页珍藏版)》请在冰豆网上搜索。
13.二次函数y=﹣(x﹣2)2+的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有 _________ 个(提示:
必要时可利用下面的备用图画出图象来分析).
14.如图,在第一象限内作射线OC,与x轴的夹角为30°
,在射线OC上取一点A,过点A作AH⊥x轴于点H,得到△AOH.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形△POQ与△AOH全等,则符合条件的△AOH的面积是 _________ .
15.为美化小区环境,某小区有一块面积为30m2的等腰三角形草地,测得其一边长为10m,现要给这块三角形草地围上白色的低矮栅栏,则其长度为 _________ m.
16.在直角坐标系中,已知两点A(﹣8,3),B(﹣4,5)以及动点C(0,n),D(m,0),则当四边形ABCD的周长最小时,比值为 _________ .
17.矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为 _________ .
18.在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、AD上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD的面积比是 _________ .
19.?
ABCD的对角线相交于点O,请你添加一个条件 _________ (只添一个即可),使?
ABCD是矩形.
20.操作与探索:
如图,在△ABC中,AC=BC=2,∠C=90°
,将一块三角板的直角顶点放在斜边的中点P处,绕点P旋转.设三角板的直角边PM交线段CB于E点,当CE=0,即E点和C点重合时,有PE=PB,△PBE为等腰三角形,此外,当CE等于 _________ 时,△PBE为等腰三角形.
21.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是 _________ .
22.幼儿园某班有玩具若干件分给小朋友,如果每人三件,那么还多59件;
如果每人分5件,那么最后一个小朋友得到玩具但不超过3件,则这个班有 _________ 件玩具.新-课-标-第-一-网
23.点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为 _________ .
三.解答题(共7小题)
24.A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:
y=﹣x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
25.如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/秒的速度沿FG方向移动,移动开始前点A与点F重合.已知正方形ABCD的边长为1cm,FG=4cm,GH=3cm,设正方形移动的时间为x秒,且0≤x≤2.5.
(1)直接填空:
DG= _________ cm(用含x的代数式表示);
(2)连结CG,过点A作AP∥CG交GH于点P,连结PD.
①若△DGP的面积记为S1,△CDG的面积记为S2,则S1﹣S2的值会发生变化吗?
请说明理由;
②当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
26.△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°
时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?
如果不变,求出线段ED的长;
如果变化请说明理由.
27.AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:
BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
28.在⊙O中,点P为直径BA延长线上一点,直线PD切⊙O于点D,过点B作BH⊥PD,垂足为H,BH交⊙O于点C,连接BD.
(2)如果AB=10,BC=6,求BD的长;
(3)在
(2)的条件下,当E是的中点,DE交AB于点F,求DE?
DF的值.
29.解方程:
.
30.某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.
(1)若购买这批小鸡苗共用了4500元,求甲、乙两种小鸡苗各购买了多少只?
(2)若购买这批小鸡苗的钱不超过4700元,问应选购甲种小鸡苗至少多少只?
(3)相关资料表明:
甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?
总费用最小是多少元?
2019九年级数学下册期中易错题测试(含答案解析)参考答案与试题解析
考点:
轴对称的性质.
专题:
规律型.
分析:
设两直线交点为O,作图后根据对称性可得.
解答:
解:
作图可得:
设两直线交点为O,
根据对称性可得:
作出的一系列点P1,P2,P3,…,Pn都在以O为圆心,OP为半径的圆上,
∵∠α=60°
,
∴每相邻两点间的角度是60°
;
故若Pn与P重合,
则n的最小值是6.
故选B
点评:
此题考查了平面图形,主要培养学生的观察、分析能力和与作图能力.
根的判别式;
解一元一次不等式组.
首先解关于x的方程ax2+(a+2)x+9a=0,求出x的解,再根据x1<1<x2,求出a的取值范围.
ax2+(a+2)x+9a=0,
解得;
x1==,
x2=,
∵x1<1<x2,
∴①>1,
﹣<a<0,
②<1.
解得:
∴﹣<a<0,
故选:
D.
此题主要考查了解一元二次方程与不等式的解法,此题综合性较强,解题的关键是利用求根公式求出x,再求不等式的解集是解决问题的关键.
3.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()
平行四边形的性质;
勾股定理.
计算题;
压轴题;
分类讨论.
根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE和CF的值,相加即可得出答案.
∵四边形ABCD是平行四边形,
∴AB=CD=5,BC=AD=6,
①如图:
由平行四边形面积公式得:
BC×
AE=CD×
AF=15,
求出AE=,AF=3,
在Rt△ABE和Rt△ADF中,由勾股定理得:
AB2=AE2+BE2,
把AB=5,AE=代入求出BE=,
同理DF=3>5,即F在DC的延长线上,
∴CE=6﹣,CF=3﹣5,
即CE+CF=1+,
②如图:
∵AB=5,AE=,在△ABE中,由勾股定理得:
BE=,
同理DF=3,
由①知:
CE=6+,CF=5+3,
∴CE+CF=11+.
故选D.
本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:
要分类讨论啊.
圆与圆的位置关系.
本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.
∵两圆的直径分别为2cm和4cm,
∴两圆的半径分别为1cm和2cm,
两圆圆心距d=2+1=3
故两圆外切.
故选B.
本题主要考查两圆之间的位置关系,两圆外离,则P>R+r;
外切,则P=R+r;
相交,则R﹣r<P<R+r;
内切,则P=R﹣r;
内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).
先将直径转化为半径,求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.
∵⊙O1和⊙O2的半径分别为3cm和4cm,圆心距O1O2=1cm,
O1O2=4﹣3=1cm,
∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相内切.
故选A.
本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:
外离P>R+r;
外切P=R+r;
相交R﹣r<P<R+r;
内切P=R﹣r;
内含P<R﹣r.
切线的性质;
坐标与图形性质;
勾股定理;
垂径定理.
压轴题;
网格型.
根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°
时F点的位置即可.
连接AC,作AC的垂直平分线BO′,交格点于点O′,则点O′就是所在圆的圆心,
∵过格点A,B,C作一圆弧,
∴三点组成的圆的圆心为:
O(2,0),
∵只有∠OBD+∠EBF=90°
时,BF与圆相切,
∴当△BO′D≌△FBE时,
∴EF=BD=2,
F点的坐标为:
(5,1),
∴点B与下列格点的连线中,能够与该圆弧相切的是:
(5,1).
C.
此题主要考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD≌△FBE时,EF=BD=2,即得出F点的坐标是解决问题的关键.
解分式方程.
计算题.
该分式方程无解的情况有两种:
(1)原方程存在增根;
(2)原方程约去分母后,整式方程无解.
去分母得:
x(x﹣a)﹣3(x﹣1)=x(x﹣1),
去括号得:
x2﹣ax﹣3x+3=x2﹣x,
移项合并得:
(a+2)x=3.
(1)把x=0代入(a+2)x=3,
∴a无解;
把x=1代入(a+2)x=3,
解得a=1;
(2)(a+2)x=3,
当a+2=0时,0×
x=3,x无解
即a=﹣2时,整式方程无解.
综上所述,当a=1或a=﹣2时,原方程无解.
分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.
8.(方程x2+3x﹣1=0的根可看作是函数y=x+3的图象与函数y=的图象交点的横坐标,那么用此方法可推断出方程x3﹣x﹣1=0的实数根x0所在的范围是()
图象法求一元二次方程的近似根.
压轴题.
所给方程不是常见的方程,两边都除以x以后再转化为二次函数和反比例函数,画出相应函数的图象即可得到实数根x0所在的范围.
方程x3﹣x﹣1=0,
∴x2﹣1=,
∴它的根可视为y=x2﹣1和y=的交点的横坐标,
当x=1时,x2﹣1=0,=1,交点在x=1的右边,
当x=2时,x2﹣1=3,=,交点在x=2的左边,
又∵交点在第一象限.
∴1<x0<2,
故选C.
本题考查了运用图象法求一元二次方程的近似根,难度中等.解决本题的关键是得到所求的方程为一个二次函数和一个反比例函数的解析式的交点的横坐标.
反比例函数综合题.
综合题;
压轴题.
先求出点A、B的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=﹣x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.
∵点C(1,2),BC∥y轴,AC∥x轴,
∴当x=1时,y=﹣1+6=5,
当y=2时,﹣x+6=2,解得x=4,
∴点A、B的坐标分别为A(4,2),B(1,5),
根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×
2=2最小,
设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,
则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,
∵1≤x≤4,
∴当x=3时,k值最大,
此时交点坐标为(3,3),
因此,k的取值范围是2≤k≤9.
本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.
二次函数的最值;
一次函数图象上点的坐标特征;
反比例函数图象上点的坐标特征;
关于x轴、y轴对称的点的坐标.菁优网版权所有
先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可.
∵M,N两点关于y轴对称,点M的坐标为(a,b),
∴N点的坐标为(﹣a,b),
又∵点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,
整理得,
故二次函数y=﹣abx2+(a+b)x为y=﹣x2+3x,
∴二次项系数为﹣<0,故函数有最大值,最大值为y==,
B.
本题考查的是二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题是利用公式法求得的最值.
二次函数图象与系数的关系.
由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;
又由对称轴为x=﹣,即可求得a=b;
由当x=1时,a+b+c<0,即可判定C错误;
然后由抛物线与x轴交点坐标的特点,判定D正确.
A、∵开口向上,
∴a>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∵对称轴在y轴左侧,
∴﹣<0,
∴b>0,
∴abc<0,
故本选项错误;
B、∵对称轴:
x=﹣=﹣,
∴a=b,
C、当x=1时,a+b+c=2b+c<0,
D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,
∴与x轴的另一个交点的取值范围为x2<﹣2,
∴当x=﹣2时,4a﹣2b+c<0,
即4a+c<2b,
故本选项正确.
此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.
60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为 7.5×
10﹣4 cm(π取3.14,结果保留两位有效数字).
圆柱的计算.
保鲜膜的厚度=膜的总厚度÷
总层数.
圆筒状保鲜膜的平均直径是(3.2+4.0)÷
2=3.6cm,而保鲜膜长的是60m=6000cm,因此一共有6000÷
(3.14×
3.6)=530层,那么厚度就是:
0.5×
(4.0﹣3.2)÷
530=7.54÷
10000=0.000754cm≈7.5×
10﹣4cm.
本题的关键是得出圆筒状包装的保鲜膜的平均直径,而不能直接让两个外径的差除以2来得出保鲜膜的厚度.
13.二次函数y=﹣(x﹣2)2+的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有 7 个(提示:
二次函数的性质.
根据二次函数的解析式可知函数的开口方向向下,顶点坐标为(2,),当y=0时,可解出与x轴的交点横坐标.
∵二次项系数为﹣1,
∴函数图象开口向下,
顶点坐标为(2,),
当y=0时,﹣(x﹣2)2+=0,
解得x1=,得x2=.
可画出草图为:
图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).
本题考查了二次函数的性质,熟悉二次函数的性质、画出函数草图是解题的关键.
,在射线OC上取一点A,过点A作AH⊥x轴于点H,得到△AOH.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形△POQ与△AOH全等,则符合条件的△AOH的面积是 ,2,, .
二次函数综合题.
探究型.
由于两三角形的对应边不能确定,故应分四种情况进行讨论:
①∠POQ=∠OAH=60°
,此时A、P重合,可联立直线OA和抛物线的解析式,即可得A点坐标,由三角形的面积公式即可得出结论;
②∠POQ=∠AOH=30°
,此时∠POH=60°
,即直线OP:
y=x,联立抛物线的解析式可得P点坐标,进而可求出OQ、PQ的长,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到点A的坐标,由三角形的面积公式即可得出结论;
③当∠OPQ=90°
,∠POQ=∠AOH=30°
时,此时△QOP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论;
④当∠OPQ=90°
,∠POQ=∠OAH=60°
,此时△OQP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论.
①如图1,当∠POQ=∠OAH=60°
,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合;
∵∠AOH=30°
∴直线OA:
y=x,联立抛物线的解析式,
解得或
故A(,),
∴S△AOH=×
×
=;
②当∠POQ=∠AOH=30°
,此时△POQ≌△AOH;
易知∠POH=60°
,则直线OP:
得,解得或,
∴P(,3),A(3,)
3×
③如图3,当∠OPQ=90°