完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx

上传人:b****6 文档编号:20423803 上传时间:2023-01-22 格式:DOCX 页数:17 大小:35.92KB
下载 相关 举报
完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx_第1页
第1页 / 共17页
完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx_第2页
第2页 / 共17页
完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx_第3页
第3页 / 共17页
完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx_第4页
第4页 / 共17页
完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx

《完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx》由会员分享,可在线阅读,更多相关《完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx(17页珍藏版)》请在冰豆网上搜索。

完整版基于m序列的扩频通信系统的仿真设计外文翻译毕业论文Word下载.docx

师意见

 

签名:

得分(10分制):

日期:

评阅教

得分10分制):

扩频技术

维基百科

摘要

扩频技术是信号(例如一个电气、电磁,或声信号)生成的特定带宽频率域中特意传播,从而导致更大带宽的信号的方法。

这些技术用于各种原因包括增加抗自然干扰和干扰,以防止检测,并限制功率流密度(如在卫星下行链路)的安全通信设立的。

频率跳变的历史:

跳频的概念最早是归档在1903年美国专利723188和美国专利725605由尼古拉特斯拉在1900年7月提出的。

特斯拉想出了这个想法后,在1898年时展示了世界上第一个无线电遥控潜水船,却从“受到干扰,拦截,或者以任何方式干涉”发现无线信号控制船是安全的需要。

他的专利涉及两个实现抗干扰能力根本不同的技术,实现这两个功能通过改变载波频率或其他专用特征的干扰免疫。

第一次在为使控制电路发射机的工作,同时在两个或多个独立的频率和一个接收器,其中的每一个人发送频率调整,必须在作出回应。

第二个技术使用由预定的方式更改传输的频率的一个编码轮控制的变频发送器。

这些专利描述频率跳变和频分多路复用,以及电子与门逻辑电路的基本原则。

跳频在无线电报中也被无线电先驱约翰内斯Zenneck提及(1908,德语,英语翻译麦克劳希尔,1915年),虽然Zenneck自己指出德律风根在早几年已经试过它。

Zenneck的书是当时领先的文本,很可能后来的许多工程师已经注意到这个问题。

一名波兰的工程师(LeonardDanilewicz),在1929年提出了这个想法。

其他几个专利被带到了20世纪30年代包括威廉贝尔特耶斯(德国1929年,美国专利,1932)。

在第二次世界大战中,美国陆军通信兵发明一种称为SIGSALY的通信系统,使得罗斯福和丘吉尔之间能相互通信,这种系统称为扩频,但由于其高的机密性,SIGSALY的存在直到20世纪80年代才知道。

最著名的跳频发明是女演员海蒂拉玛和作曲家乔治安太尔,他们的“秘密通信系统”1942年获美国第专利。

拉玛与前夫弗里德里希汀曼德这位奥地利武器制造商在国防会议上了解到这一问题。

安太尔-拉马尔版本的跳频用钢琴卷88个频率发生变化,其旨在使无线电导向鱼雷,让敌人很难来检测或干扰。

该专利来自五零年代ITT公司和其他私人公司开始时发展码分多址(CDMA),一个民间形式扩频,尽管拉马尔专利有没对后续技术有直接影响。

它其实是在麻省理工学院林肯实验室、乐华政府和电子工业公司、国际电话电报公司及万年电子系统导致早期扩频技术在20世纪50年代的长期军事研究。

雷达系统的并行研究和一个称为“相位编码”的技术类似概念对扩频发展造成影响。

商业用途

罗伯特·

狄克逊,在1976年发表了国际标准图书编号为1的扩频系统项技术,是在商业化进程中一个重要的里程碑。

前出版物要么是军事报告要么是不起眼的专题学术论文。

狄克逊的书是第一本全面非机密性的技术研讨,并设置提高到商业应用的研究阶段。

初步扩频商业用途开始于美国20世纪80年代,有三个系统:

赤道通信系统甚小口径终端(VSAT)卫星报纸新闻专线服务终端系统、德尔诺特的技术用无线电导航系统进行飞机对作物除尘的控制和类似应用导航系统终端系统,以及高通公司的OmniTRACS系统用于卡车的通信。

在高通和赤道的系统中,扩频启用小型天线浏览多个卫星是由于扩频处理增益用于消除干扰。

德尔诺特系统用扩频高带宽来提高定位精度。

1981年,美国联邦通信委员会开始探索,在调查通知的议事日程中允许扩频更多一般民事用途。

这个审理是联邦通讯委员会提出,然后由迈克尔联邦通讯委员会的工作人员马库斯指示。

在审案件的建议得到普遍频谱用户和无线电设备制造商反对,尽管他们得到惠普小组的支持。

而该实验室组支持这一建议后成为安捷伦的一部分。

1985年5月决定批准这个案卷3频段无节制扩频使用权高达1瓦。

联邦通讯委员会当时表示,欢迎为传播其他频带的额外要求。

由此产生的规则,即现在的第47未来研究中心允许的Wi-Fi,蓝牙,无绳电话,包括许多其他产品由15.247编纂。

这些规则,然后在其他许多国家效仿。

高通成立后2个月内决定可以商用化CDMA技术。

扩频通信

这是一种在其(电信)信号传输一个带宽远远多于原始信息的频率内容的技术。

扩频通信是构建技术,它采用直接序列、调频,或多个访问多种功能可用这些的混合信号。

这种技术减少了对其他接收机的潜在干扰,同时实现隐私。

扩频通常会使用噪声的连续的信号传播结构,通常使用窄带上的信息信号分散一个相对宽带(单选)的波段的频率。

接收器接收信号的相关性检索原始的信息信号。

要么努力抵御敌人的通信干扰(防堵塞,或简称AJ),或隐瞒事实,沟通,甚至发生,有时也称为低截获概率(LPI)的。

跳频扩频(FHSS),直接序列扩频(DSSS)、时间跳频扩频(THSS)、线性扩频(CSS),和这些技术的组合都是扩频的形式。

每种方法采用了伪随机数字序列使用的伪随机数字生成器创建——以确定与控制信号通过分配带宽的传播模式。

超宽带(UWB)是另一种调制技术,实现了基于传输短时间内脉冲相同的目的。

无线以太网标准IEEE802.11在其无线接口使用跳频扩频或直接序列扩频。

备注

∙自20世纪40年代以来已知和自20世纪50年代以来在军事通信系统中使用的技术。

∙“传播”的无线电信号较宽的频率范围内若干程度高于最低要求。

扩频的核心原则就是波载波噪声样,使用和作为名称意味着比相同的数据速率在简单的点对点通信所需更多的带宽。

∙两种主要的方法:

1.直接序列(DS)

2.跳频(FH)

∙耐干扰。

直接序列在抵御连续时间窄带干扰更好,而跳频抗脉冲干扰是更好。

在直接序列系统中,窄带干扰会影响检测性能如干扰功率量蔓延了整个信号的带宽时,通常检测性能不会比更强背景噪声。

相比之下,在那些低带宽的窄带信号系统,如果干扰功率恰巧集中在信号带宽那么接收的信号质量将会严重降低。

∙抗窃听。

扩频代码(在直接序列系统)或跳频模式(在跳频系统)通常任何一方都不知道谁的信号是未定义的,在这种情况下“加密”信号,并降低对方的对其的判断意识。

更重要的是,有一个给定的噪声功率谱密度(PSD),扩频系统需要在每比特相同数量的能源之前传播窄带系统因此同样的功率,如果比特率在扩展前是相同的,但由于每比特能量信号功率扩散超过一个大带宽的扩散,则信号PSD的要低得多,而往往大大低于噪声PSD的,因此对手可能无法确定是否存在于所有的信号。

不过,对于关键任务的应用尤其是雇用商用无线电通讯设备,扩频无线电本质上没有提供足够的安全“……只用扩频无线电通信本身是不足够的安全。

∙抗衰落。

扩频信号所占用的高带宽提供某些频率的多样性,也就是说,即是不可能的信号也会遇到整个带宽的严重多径衰落,而在其他情况下信号可以被检测到使用,例如Rake接收机。

∙多种接入能力。

多个用户可以同时传输相同的频率(范围),只要他们使用不同的扩频码。

请参阅CDMA。

扩频时钟信号的生成

扩频时钟发生器(SSCG)用于一些同步数字系统,特别是那些含有微处理器,以减少电磁干扰(EMI),这些系统生成密度谱。

同步数字系统是指驱动的时钟信号,而且因为其周期性,难免有一个窄的频谱。

事实上,一个完善的时钟信号会集中在一个单一的频率及其谐波上,因此将发出无限功率谱密度能量。

实用放射同步数字系统在对时钟频率及其谐波在窄波段的电磁能量数量的分布,在特定的频率可以超过电磁干扰(例如那些在美国的通信委员会、日本电子信息技术产业协会及欧洲的国际电工委员会)。

若要避免此项问题即制造商重视扩频时钟的商业使用。

这包括使用扩频通信部分所述的方法之一,以降低峰值辐射能量。

因此,重塑该技术系统的电磁辐射符合电磁兼容性(EMC)的规定。

这是一个受欢迎的技术,因为可用于只有一个简单修改法规批准获取设备。

扩频时钟已经变得越来越流行,因为便携式电子设备中更快的时钟速度和日益一体化的高分辨率液晶显示器体现在小型的设备上。

因为这些设备的设计既轻又便宜,如电容器或屏蔽金属减少电磁干扰的被动措施并非一个可行的选择。

主动减少电磁干扰技术如扩频时钟技术减少在这些情况下有必要,但也可以为设计者创建挑战。

在其中主要的风险是修改系统时钟的时钟运行的风险数据的偏差。

请务必注意此方法不会减少系统的总能量辐射,因此并不一定能使系统不太容易造成干扰。

在一个狭窄的窗口测量的优势是分布在一个大范围的频率波段的能量有效地降低了电和磁场的频率。

扩频时钟工作原因是因为测量接收机在电磁兼容性测试实验室使用的频带划分成约120千赫兹电磁波谱宽。

如果被测系统在同一频率传播能量,它将会在被监视的频带的大高峰注册。

扩频时钟分布能量,以便它属于一个大量的接收器频段且不必投入任何一个带足够的能量去超过法定限度。

在扩频时钟作为实际减少干扰方法的有效性往往被争论,但很可能一些电子设备具有灵敏性的频率的窄带会遇到较少的干扰,而其它宽带具有敏感性的设备会遇到较多的干扰。

扩频时钟生成现代开关电源供应(升温期),含瀑布图的谱传遍了几分钟。

记录与阴极5030电磁兼容性分析仪

通信委员会认证测试经常是为了减少测量到可接受的规定范围内的排放量所启用的扩频功能完成的。

然而,某些基本输入输出系统的作者包括用户能设置够禁用扩频时钟发生器,从而推翻了抗电磁干扰规范。

这可被视为一个漏洞,但通常被忽略,只要默认的基本输入输出系统制造商提供的设置具有启用扩频的功能。

一个禁用扩频计算机系统时钟的能力被认为是可以使用的最高时钟速度所影响的组件实现的,由于涉及时钟偏移的扩频技术有用,影响到超频的功效。

主要技术:

一、直接序列扩频

在电信中,直接序列扩频(DSSS)是一种调制技术。

与其他扩频技术一样传输的信号比被调制的信息信号的占用更多带宽。

‘扩频’名称来自一个事实,即载波信号在整个带宽(谱设备的发射频率)发生。

功能

1.与它相调制正弦波伪随机地与伪连续的字符串(PN)的代码符号称为“芯片”,各自有一个比信息比特更短的时间。

也就是说每个信息位是由一个更快的芯片序列调制,因此芯片速率远高于信息信号的比特率。

2.它使用的信号接收器的众所周知的先验结构,其中是由发射机生产的芯片序列。

接收器就可以使用相同的伪随机码序列,以抵消对接收信号的伪随机码序列的影响,以重建信息信号。

传输方法

直接序列扩频传输数据乘以由一个“噪音”信号传送。

这种噪声信号是1和-1伪随机序列值,其频率比原始信号为高,从而带能量延伸到更广泛的原信号。

产生的信号类似于白噪声,像“静态”的音频录音。

不过,这个类似噪声的信号可用于乘以相同的伪随机序列完全重建接收端的原始数据(因为1×

1=1,−1×

−1=1)。

这个过程称为“解扩”的过程在数学上构成传播的PN序列,接收方认为使用发射器PN序列的相关性。

对于解扩的正常运行,发送和接收序列必须同步。

这需要通过某种形式的时间搜索过程使发射器的序列与接收器序列同步。

但是,这种明显的缺点可以是一个重要好处:

如果多个发射器的序列是相互同步的,那么相对的同步接收器必须使它们之间可以用来确定相对时间,而反过来,如果已知发射器的位置,可用于计算接收器的位置。

这是许多卫星导航系统的基础。

调用过程中加强对通道信噪比造成的影响被称为处理增益。

这种影响可通过采用较大较长PN序列和每比特更多的芯片,但用来生成PN序列的物理设备的多个芯片上可达到的处理增益实际限制。

如果在同一信道发送器发送同一频道,但使用不同的PN序列(或根本没有序列)解扩过程导致该信号没有获得处理。

这种效果是码分多址(CDMA)属性的直接序列扩频,它允许多个发射机内共享他们的伪码序列的互相关特性来限制相同的频道。

由于这说明表明,一个传输的波形图有一个大致的钟形信封的载波频率为中心,就像AM传播,除了增加的传输噪音导致的分配要大大高于一个AM信号的更广泛的传播。

相比之下,跳频扩频伪随机重新调整载波信号,而不是添加伪随机噪声数据,结果导致在一个统一的频率分布,其宽度是由伪随机数发生器的输出范围决定。

优点

∙对预期的或非预期抗干扰

∙共享多个用户间的单信道

∙减少信号背景噪声级别包装截取(隐身)

∙发射器与接收器之间的相对时间的测定

使用

∙美国全球定位系统和欧洲伽利略卫星导航系统

∙基于直接序列扩频系统(直接序列码分多址)是一种在扩频多址接入方案的基础上,从信号的传播,到不同的用户有不同的代码。

这是CDMA的最广泛使用的类型。

∙无绳电话在900兆赫,2.4吉赫和5.8吉赫频带操作

∙电气和电子工程师协会802.11b2.4GHz无线网络和其前身802.。

(正交频分复用技术继任802.11g技术)

∙自动抄表

∙电气和电子工程师协会802.15.4标准(例如用作物理层和链路层的紫蜂)

二、跳频扩频

跳频扩频(FHSS)通过很多渠道快速切换频率,其中一个运载体发射无线电信号的一种方法是,使用一个发射机和接收机已知的伪随机序列。

它被利用作为多个访问方法中跳频码分多址(FH-CDMA)计划。

扩频传输通过三个主要优点提供了固定频率传输:

1.扩频信号高度抗窄带干扰。

再收集传播信号传播出了干扰信号的过程,导致其退到背景的干扰信号。

2.扩频信号难以进行拦截。

一个跳频扩频信号显示为一个简单的背景噪声增加至窄带接收机。

如果窃听者知道了伪随机序列,他们只能够拦截传输。

3.扩频传输可以与许多类型的最小干扰的常规传输共享一个频带。

扩频信号添加最小噪声窄频的通信,反之亦然。

这样一来可以更有效地利用带宽。

基本的算法

通常,一个调频通信的启动是如下所示

1.发起方发送请求通过预定义的频率或控制通道。

2.接收方发送一个数字,像已知的种子。

3.发起方作为变量的计算顺序,必须使用的频率的一个预定义算法中使用该号码。

最经常的频率变化的时期是预定义的,以允许一个基站,服务多个连接。

4.发起方通过第一次发送同步信号的频率计算,从而为接受确认它有正确的计算顺序。

5.在通信开始,发送方和接收沿该计算的顺序在同一点开始的时间更改其频率。

军事用途

扩频信号是很好抵抗到故意干扰,除非对方有传播特性的知识。

军用无线电通讯设备使用加密技术来生成所控制的传输安全密钥(TRANSEC),发送方和接收方共享一个秘密通道序列。

本身,跳频只提供有限的防止窃听和干扰保护。

若要绕过此弱点最现代军事频率跳跃收音机经常采用单独的加密设备如KY57。

美国军事收音机使用频率跳变的包括有快速和单信道地面与机载通信系统。

技术的几点思考

所需频率跳变的整体带宽是比需要来传输仅一个相同信息使用载波频率更大。

不过,由于在任何给定时间只能在此带宽的一小部分上发生传播,实在是一样有效的干扰带宽是。

虽然没有提供额外的热噪声对宽带的保护,跳频方法确实降低窄带干扰造成的退化。

对跳频系统的挑战之一是如何同步发射器和接收器。

一种方法是有将保证的发射机使用在固定时间内的所有渠道。

接收器随机选择一个频道就可以找到发送器,该频道提供有效的数据倾听变送器。

发送器的数据都是通过一个特殊的数据序列不像发生在这个渠道为数据段和段可以有一个完整的校验和进一步鉴定。

发射器和接收器可以使用固定的渠道序列表,以便他们按照表中的能保持同步。

每个通道段上发射器表中,可以将其当前位置的进行发送。

在美国的通信委员会第15部分无牌系统900兆赫兹和2.4兆赫兹频带上允许更多非扩频系统功率。

调频和直接序列系统可以在1瓦传输。

该限制从1毫瓦增加到1瓦或增加一千倍。

美国联邦通讯委员会(FCC)规定了渠道的最低数目和每个通道的最大驻留时间。

在实际的多点式无线电系统,空间允许的多个相同频率的传输,在一个地理区域内可能使用多个无线电设备。

这将创建系统数据速率高于香农极限的单通道的可能性。

扩频系统没有违反香农极限。

扩频系统过多的依赖信号信噪比的频谱共享。

多输入多输出和直接序列扩频系统中也看到此属性。

电波传导和定向天线也通过提供远程无线电通讯设备之间的隔离提高系统的性能。

跳频扩频的变化

自适应跳频扩频(AFH)(如使用蓝牙)通过避免使用拥挤的频率跳变序列提高了抗射频干扰。

这种自适应传输是调频扩频比直接序列扩频更容易实现。

自适应跳频扩频主要用意是避免“不好”的频道使用仅在“良好”的频率——或许那些“不良”的频道遇到频率选择性衰落,或者一些第三方试图对这些波段沟通,或者那些波段正在被积极地干扰。

因此,自适应跳频扩频应从检测好坏信道的机制中得到补充。

但是,如果无线电频率干扰本身就是动态的,那么“坏信道清除”的策略在自适应跳频应用可能无法工作。

例如,如果有几个同位跳频网络(如蓝牙技术的微微网),

那么他们是相互干扰且自适应跳频的策略未能避免这种干扰。

在这种情况下,有需要使用动态适应的频率跳变模式的策略。

这种情况往往发生在无节制的情况下使用频谱。

此外,动态无线电频率的干扰,预计发生涉及感知无线电的方案中,该方案中会出现网络和设备应展示变频操作。

线性调频扩频可以被视为一种跳频,只需通过可用频率以连续顺序扫描。

三、线性调频扩频

一个线性调频时间域中的上线性调频信号

线性调频扩频(CSS)是一种扩频技术使用宽带线性调频脉冲对信息进行编码。

一个线性调是在一定时间正弦信号频率的增加或减少。

上面是一个线性调频信号的一个示例-可以看到随着时间的推移频率线性增加。

概述

如同其他扩频方法,线性调频频谱使用其全部分配到的带宽广播信号,使信道噪声强劲。

此外,由于线性调频利用了频谱的宽带,线性调频扩频也能够抵抗多径衰落,即使在非常低的功率下运行。

然而,与直接序列扩频(DSSS)或频率跳频(FHSS),由于它不添加任何伪随机的信号分量,以帮助区分的信道噪声它扩频,而不是依靠线性调频脉冲的线性性质。

此外,调频扩频的抗多普勒效应,这是在移动无线应用的典型。

线性调频扩频最初设计是为与测距精度及低速率无线网络在2.45GHz频带中的超宽带竞争。

但是,自美国电气和电子工程师协会802.15.4a(也称为IEEE802.15.4a-2007)的版本,它不再是正积极考虑为在标准化领域测距的精度规程。

目前,Nanotron科技,生产实时定位装置,并获得线性调频扩频主要力量后加入到电机及电子学工程师联合会802.15.4a标准,是唯一使用线性调频扩频的无线设备卖方。

特别是,他们的主要产品,NanoLOC的TRX收发器,使用在线性调频扩频和作为一个实时的网络设备销售位置和电子标签能力。

有些地方这种技术可能是有作用的是医疗应用,物流(即容器需要被跟踪),以及政府安全应用。

Nanotron甚至测试TRX收发器用于在钢厂工业监测和控制,它能存在于导致的计算机和显示器与它连接失败的热量中。

调频扩频非常适合需要低功耗的应用程序和需要的带宽数量相对较少(1兆比特秒或更少)的情况下。

特别是在IEEE802.15.4a指定线性调频扩频作为一种低速率无线技术在个人局域网(LR—WPAN)中使用。

但是,尽管IEEE802.15.4-2006标准指定个人区域网络包含10米的或较少的区域,IEEE802.15.4a-2007指定线性调频扩频在物理层使用时延长范围和设备在高速移动作为是您的网络运行的一部分。

Nanotron的线性调频扩频的执行工作,实际上是看到在570米范围内的设备之间。

此外,Nanotron为该项目的执行能够工作在数据传输速率可高达2Mbits比802.15.4a任务指定的速率要高。

最后,IEEE802.15.4a标准的物理层实际上混合线性调频扩频编码技术与差分相移键控调制(DPSK)以达到更好的数据传输速率。

线性调频扩频也可用于军事应用前景,因为它是非常困难的探测和拦截时,在低功耗工作。

四、时间跳频

时间跳频通信中,传播中的承运人打开和关闭的伪代码序列的频谱技术。

这里就不再赘述。

SpreadSpectrumTechniques

ByWikipedia

Abstract:

Spread-spectrumtechniquesaremethodsbywhichasignal(e.g.anelectrical,electromagnetic,oracousticsignal)generatedinaparticularbandwidthisdeliberatelyspreadinthefrequencydomain,resultinginasignalwithawiderbandwidth.Thesetechniquesareusedforavarietyofreasons,includingtheestablishmentofsecurecommunications,increasingresistancetonaturalinterferenceandjamming,topreventdetection,andtolimitpowerfluxdensity(e.g.insatellitedownlinks).

HistoryFrequencythe1903U.S.PatentandU.S.PatentfiledbyNikolaTeslainJuly1900.Teslacameupwiththeideaafterdemonstratingtheworld'

sfirstradio-controlledsubmersibleboatin1898,whenitbecameapparentthewirelesssignalscontrollingtheboatneededtobesecurefrom"

beingdisturbed,intercepted,orinterferedwithinanyway."

Hispatentscoveredtwofundamentallydifferenttechniquesforachievingimmunitytointerference,bothofwhichfunctionedbyalteringthecarrierfrequencyorotherexclusivecharacteristic.Thefirstwhicheachoftheindividualtransmittedfrequencies,inorderforthecontrolcircuitrytorespond.Thesecondtechniqueusedavariable-frequencytransmittercontrolledbyanencodingwheelthatalteredthetransmittedfrequencyinapredeterminedmanner.Thesepatents

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1