函数的性质及其应用.docx

上传人:b****2 文档编号:2035947 上传时间:2022-10-26 格式:DOCX 页数:10 大小:309.68KB
下载 相关 举报
函数的性质及其应用.docx_第1页
第1页 / 共10页
函数的性质及其应用.docx_第2页
第2页 / 共10页
函数的性质及其应用.docx_第3页
第3页 / 共10页
函数的性质及其应用.docx_第4页
第4页 / 共10页
函数的性质及其应用.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

函数的性质及其应用.docx

《函数的性质及其应用.docx》由会员分享,可在线阅读,更多相关《函数的性质及其应用.docx(10页珍藏版)》请在冰豆网上搜索。

函数的性质及其应用.docx

函数的性质及其应用

第二专题函数的性质及其应用

第一课时函数的性质

一、考点核心整合

函数的性质主要体现在五个方面:

1、定义域:

 

2、值域:

 

3、奇偶性:

 

4、单调性:

 

5、周期性:

 

二、典例精讲:

例1设函数,区间,集合,则使成立的实数对有()

A、0个B、1个C、2个D、无穷多个

 

例2已知函数在内取极大值,在内取得极小值,求的取值范围.

 

例3设偶函数在区间上是增函数,试判断在区间上单调性,并加以证明.

 

三、提高训练:

姓名____________

(一)选择题:

1.设,二次函数的图象为下列之一,则的值为()

 

A、1B、-1C、D、

2.设函数是定义在R上的以3为周期的奇函数,若,

则的取值范围是()

A、B、C、D、

3.设函数,若,则

的值等于()

A、4B、8C、16D、

4.函数在上的最大值与最小值之和为3,则等于()

A、B、2C、4D、

5.设,函数,则使的的取值范围是

A、B、C、D、

(二)填空题:

6.函数的图象按向量平移得到,则的解析式为__________.

7.已知是R上的奇函数,且,则=_____.

8.定义符号函数,则不等式的解集为_____.

(三)解答题:

9.已知函数的最大值是0,最小值是,求的值.

 

10.已知是定义在的奇函数,当,且时,有.

(Ⅰ)判断函数的单调性,并给以证明;

(Ⅱ)若,且对所有,恒成立,求实数的取值范围.

 

11.已知是函数的一个极值点,其中.

(Ⅰ)求与的关系表达式;

(Ⅱ)求的单调区间;

(Ⅲ)当时,函数的图象上任意一点的斜率恒大于,求的取值范围.

 

第二课时函数的图象

一、考点核心整合

1.要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数等各种基本初等函数的图象.

2.函数图象的作法有两种:

一种是描点法;另一种是图象的变换法.

(1)描点法作图:

一般要考虑定义域,化简解析式,描出能确定图象伸展方向的几个关键点.

(2)利用图象变换法作图:

①平移变换:

 

②对称变换:

 

③翻折变换:

 

④伸缩变换:

二、典例精讲:

例1已知函数的图象如图所示(其中是函数

的导函数),下面四个图象中的图象大致是()

 

例2已知函数的图象与函数的图象关于点对称.

(Ⅰ)求的解析式;

(Ⅱ)若,且在区间上为减函数,求实数的取值范围.

 

例3已知函数和的图象关于原点对称,且.

(Ⅰ)求的表达式;

(Ⅱ)解不等式;

(Ⅲ)若在上是增函数,求实数的取值范围.

 

三、提高训练:

姓名____________

(一)选择题:

1.已知,若,则()

A、B、

C、D、的大小关系不确定

2.当函数的图象不过第二象限时,则的取值范围是()

A、B、C、D、

3.函数的图象如右图,则下列结论正确的是()

A、B、

C、D、

4.若函数是增函数,那么的图象是

 

5.将函数的图象进行变换,使所得图象与函数的图象关于轴对称,这种变换是()

A、向左平移1个单位B、向右平移1个单位

C、向上平移1个单位D、向下平移1个单位

(二)填空题:

6.若函数的图象关于直线对称,则_______.

7.设是定义在R上的奇函数,且的图象关于直线对称,则

=_________.

8.设函数的图象关于点对称,且存在反函数,则=________.

(三)解答题:

9.给定实数,设函数.求证:

(Ⅰ)经过这个函数图象上任意两点的直线不平行于轴;

(Ⅱ)这个函数的图象关于直线对称.

 

10.已知函数.

(Ⅰ)证明函数的图象在轴的一侧;

(Ⅱ)设是图象上两点,证明直线的斜率大于0;

(Ⅲ)求函数的图象的交点坐标.

 

11.设函数的定义域为,若存在,使得,则称以为坐标的点为函数图象上的不动点.

(Ⅰ)若函数的图象上有两个关于原点对称的不动点,求满足的条件;

(Ⅱ)在(Ⅰ)的条件下,若,记函数图象上的两个不动点分别为,为函数的图象上的另一点,且其纵坐标,求点到直线距离的最小值及取得最小值时点的坐标;

(Ⅲ)命题“若定义在R上的奇函数的图象上存在有限个不动点,则不动点有奇数个”是否正确?

若正确,试给予证明,并举出一例;若不正确,试举一反例说明.

 

第三课函数的综合问题及应用

一、考点核心整合

函数几乎渗透到中学数学的各个角落,它与其他知识互相渗透、相互融合,函数这一章应用的广泛性、解法的多样性和思维的创造性构成了本课时的重点.

(1)函数与不等式的综合;

(2)函数与方程的综合;

(3)函数与数列的综合;

(4)利用导数研究函数的单调性、最值等.在解决函数综合问题时,要认真分析,处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是要注意数学思想方法的运用.

这部分内容在高考中多以大题形式出现,有一定的难度.

二、典例精讲:

例1设,函数,则使的的取值范围是()

A、B、C、D、

 

例2已知函数.

(Ⅰ)若,且函数存在单调递减区间,求的取值范围;

(Ⅱ)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交于点.证明在点处的切线与在点处的切线不平行.

 

例3设平面内两向量与互相垂直,且,又与是两个不同时为0的实数.

(Ⅰ)若与垂直,求关于的函数关系式;

(Ⅱ)试确定的单调区间.

 

课后思考:

对于函数,若存在,使成立,则称为的不动点,已知函数.

(Ⅰ)当时,求函数的不动点;

(Ⅱ)若对任意实数,函数恒有两个相异的不动点,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,若图象上两点的横坐标是函数的不动点,且两点关于直线对称,求的最小值.

 

三、提高训练:

姓名____________

(一)选择题:

1.已知是定义在R上的偶函数,并且满足,当时,,则等于()

A、B、C、D、

2.设是的反函数,则使成立的的取值范围为()

A、B、C、D、

3.设函数的定义域为,如果对于任意的,存在唯一的,使

成立,则称函数在上的均值为.给出下列四个函数:

①;②;③;④.则满足在其定义域上均值为2的所有函数是()

A、①②B、③④C、①③④D、①③

4.已知是方程的根,是方程的根,则等于()

A、6B、3C、2D、1

5.若是R上的偶函数,在上是减函数,且,则使得的的取值范围是()

A、B、C、D、

(二)填空题:

6.对于函数定义域中任意的,有如下结论:

①;②;③;

④.

当时,上述结论中正确结论的序号是____________.

7.设函数是最小正周期为2的偶函数,

它在区间上的图象为如图所示的线段,则

在区间上,__________.

8.把下面不完整的命题补充完整,并使之成为真命题:

若函数的图象关于_____________对称,则函数______________.(注:

填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形)

(三)解答题:

9.已知函数.

(Ⅰ)求;

(Ⅱ)设表示由轴、与所围成的图形的面积,求.

 

10.设,求函数的单调区间.

 

11.已知函数.

(Ⅰ)当时,求函数的最大值与最小值;

(Ⅱ)求实数的取值范围,使在区间上是单调函数.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 学科竞赛

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1