化工原理习题Word文档下载推荐.docx

上传人:b****6 文档编号:20342519 上传时间:2023-01-22 格式:DOCX 页数:25 大小:385.48KB
下载 相关 举报
化工原理习题Word文档下载推荐.docx_第1页
第1页 / 共25页
化工原理习题Word文档下载推荐.docx_第2页
第2页 / 共25页
化工原理习题Word文档下载推荐.docx_第3页
第3页 / 共25页
化工原理习题Word文档下载推荐.docx_第4页
第4页 / 共25页
化工原理习题Word文档下载推荐.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

化工原理习题Word文档下载推荐.docx

《化工原理习题Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《化工原理习题Word文档下载推荐.docx(25页珍藏版)》请在冰豆网上搜索。

化工原理习题Word文档下载推荐.docx

对照附录,可选取?

219?

6mm的无缝钢管,其中219mm代表管外径,6mm代表管壁厚度。

于是管内实际平均流速为:

m/s

4.5的支管,使支管内质量流量m1=m/2,则:

将d1=159-2?

4.5=150mm=0.15m,d=219-2?

6=207mm=0.207m,u=0.95m/s代入得:

例1-420℃水以0.1m/s的平均速度流过内径d=0.01m的圆管,试求1m长的管子壁上所受到的流体摩擦力大小。

解首先确定流型。

查附录得20℃水的物性为:

?

=998.2kg/m3,?

=1.005cP=1.005×

10-3Pa?

s,于是

可见属层流流动。

由式1-88得:

N/m2

1m长管子所受的总的摩擦力

N

例1-5关于能头转化

如附图1所示,一高位槽中液面高度为H,高位槽下接一管路。

在管路上2、3、4处各接两个垂直细管,一个是直的,用来测静压;

一个有弯头,用来测动压头与静压头之和,因为流体流到弯头前时,速度变为零,动能全部转化为静压能,使得静压头增大为(p/?

g+u2/2g)。

假设流体是理想的,高位槽液面高度一直保持不变,2点处直的细管内液柱高度如图所示;

2、3处为等径管。

试定性画出其余各细管内的液柱高度。

解如图1-25所示,选取控制面1-1面、2-2面、3-3面和4-4面。

对1-1面和2-2面间的控制体而言,根据理想流体的柏努利方程得:

式中u1=0,p1=0(表压),z2=0(取为基准面),于是,上式变为:

(1)

这就是2点处有弯头的细管中的液柱高度,见附图2,其中比左边垂直管高出的部分代表动压头大小。

同理,对1-1面和3-3面间的控制体有:

(2)

可见,3点处有弯头的细管中的液柱高度也与槽中液面等高,又因为2、3处等径,故u2=u3,而z3>

z2=0,故由式1、式2对比可知,p3/?

g<

p2/?

g,静压头高度见图1-26。

在1-1面和4-4面间列柏努利方程有:

(3)

可见,4点处有弯头的细管中的液柱高度也与槽中液面等高。

又z3=z4,u4>

u3,对比式3、式2可见:

例1-6轴功的计算

如图所示,用泵将河水打入洗涤塔中经喷嘴喷出,喷淋下来后流入废水池。

已知管道尺寸为?

114?

4mm,流量为85m3/h,水在管路中流动时的总摩擦损失为10J/kg(不包括出口阻力损失),喷头处压力较塔内压力高20kPa,水从塔中流入下水道的摩擦损失可忽略不计。

求泵的有效轴功率。

解取河面为1-1面,喷嘴上方管截面为2-2面,洗涤塔底部水面为3-3面,废水池水面为4-4截面。

河水经整个输送系统流至废水池的过程中并不是都连续的,在2-2面和3-3面之间是间断的,因此,机械能衡算方程只能在1-2、3-4之间成立。

在1-1面和2-2面间列机械能衡算方程:

取河面为基准面,则z1=0,z2=7m,又u1?

0(河面较管道截面大得多,可近似认为其流速为零),

m/s,p1=0(表),wf=10J/kg。

将以上各值代入上式,得:

式中p2由3-3面与4-4面间的机械能衡算求取。

因流体在3、4面间的流动损失不计,故有:

取4-4面为基准面,则z3=1.2m,z4=0,又u3?

u4?

0,p4(表)=0代入上式解之得:

J/kg

于是

J/kg

故泵的有效轴功率为:

=2137W?

2.14kW

例1-7如图所示,将敞口高位槽中密度870kg/m3、粘度0.8?

s的溶液送入某一设备B中。

设B中压力为10kPa(表压),输送管道为?

38?

2.5无缝钢管,其直管段部分总长为10m,管路上有一个90?

标准弯头、一个球心阀(全开)。

为使溶液能以4m3/h的流量流入设备中,问高位槽应高出设备多少米即z为多少米?

解选取高位槽液面为1-1面、管出口内侧截面为2-2面,并取2-2面为位能基准面。

在1-1面与2-2面间列机械能衡算式:

式中:

Pa,?

=870kg/m3,

,可见属湍流流动,查表1-1并取管壁绝对粗糙度?

=0.3mm,则?

/d=0.00909,查图1-30得?

=0.038(或按式1-117计算得)。

查表1-2得有关的各管件局部阻力系数分别为:

突然缩小:

1=0.5;

90?

标准弯头:

2=0.75;

球心阀(全开):

3=6.4。

于是

将以上各数据代入机械能衡算式中,得:

m

本题也可将2-2面取在管出口外侧,此时,u2=0,而wf中则要多一项突然扩大局部损失项,其值恰好为u22/2,故管出口截面的两种取法,其计算结果完全相同。

例1-8设计型问题

已知一自来水总管内水压为2?

105Pa(表压),现需从该处引出一支管将自来水以3m3/h的流量送至1000m远的用户(常压),管路上有90?

标准弯头10个,球心阀(半开)2个,试计算该支管的直径。

已知水温20?

C,由于输送距离较长,位差可忽略不计。

解从支管引出处至用户之间列机械能衡算方程,得:

(1)

式中,p1=2?

105Pa,p2=0,?

=1000kg/m3,?

=1.005?

s,l=1000m,查表1-2得,90?

标准弯头10个:

1=0.75?

10=7.5;

球心阀(半开)2个:

2=9.5?

2=19

所以?

=?

1+?

2=26.5

代入式

(1)得:

(2)

因?

与d有复杂的函数关系,故由式

(2)求d需用试差法。

变化较小,试差时可选用?

作为试差变量。

试差过程如下:

首先假设流动处在完全湍流区,取?

=0.3mm,则:

查图1-30,得?

=0.035,由式

(2)得:

属湍流。

再由?

/d=0.0077及Re查图1-30或由式1-117计算得:

与?

初值相差不大,试差结束。

最后结果为:

mm。

根据管子标准规格(见附录)圆整,可选用?

48?

3.5mm的镀锌水管。

此时管内流速为:

可见,u处在经济流速范围内。

例1-9操作型问题分析

如图所示,通过一高位槽将液体沿等径管输送至某一车间,高位槽内液面保持恒定。

现将阀门开度减小,试定性分析以下各流动参数:

管内流量、阀门前后压力表读数pA、pB如何变化?

(1)管内流量变化分析

取管出口截面2-2面为位能基准面,在高位槽液面1-1面和2-2面间列机械能衡算方程:

将阀门开度减小后,上式等号左边各项均不变,而右边括号内各项除?

增大外其余量均不变(?

一般变化很小,可近似认为是常数),故由此可推断,u2必减小,即管内流量减小。

(2)阀门前后压力表读数pA、pB变化分析

取压力表pA所在管截面为A-A面,由1-1面、A-A面间的机械能衡算可得:

当阀门关小时,上式等号右边各项除uA减小外,其余量均不变,故pA必增大。

pB的变化可由B-B面、2-2面间的机械能衡算分析得到:

当阀门关小时,上式等号右边各项除u2减小外,其余量均不变,故pB必减小。

讨论:

由本题可引出如下结论:

简单管路中局部阻力系数的变大,如阀门关小,将导致管内流量减小,阀门上游压力上升,下游压力下降。

这个规律具有普遍性。

例1-10操作型问题计算

用水塔给水槽供水,如图所示,水塔和水槽均为敞口。

已知水塔水面高出管出口12m,输水管为?

4mm,管路总长100m(包括所有局部损失的当量长度在内),管的绝对粗糙度?

=0.3mm,水温20?

C。

试求管路的输水量V。

解因管出口局部摩擦损失已计入总损失中,故管出口截面取外侧,为面2-2,此时u2=0。

在水塔水面1-1面与2-2面间列机械能衡算方程,得:

将z1=12m,l+?

le=100m,d=114-2?

4=106mm=0.106m代入并化简得:

由此式求u需试差。

假设流动进入阻力平方区,由?

/d=0.3/106=0.0028查图得?

=0.026,代入上式得:

从附录查得20?

C水?

=1?

s,于是

由Re数和?

/d=0.0028重新查图得:

=0.026,与假设值相同,试差结束。

流量

m3/s=98.4m3/h

例1-11设计型问题

某一贮罐内贮有40?

C、密度为710kg/m3的某液体,液面维持恒定。

现要求用泵将液体分别送到设备一及设备二中,有关部位的高度和压力见图。

送往设备一的最大流量为10800kg/h,送往设备二的最大流量为6400kg/h。

已知1、2间管段长l12=8m,管子尺寸为?

108?

4mm;

通向设备一的支管段长l23=50m,管子尺寸为?

76?

3mm;

通向设备二的支管段长l24=40m,管子尺寸为?

3mm。

以上管长均包括了局部损失的当量长度在内,且阀门均处在全开状态。

流体流动的摩擦因数?

均可取为0.038。

求所需泵的有效功率Ne。

解这是一个分支管路设计型问题。

将贮罐内液体以不同流量分别送至不同的两设备,所需的外加功率不一定相等,设计时应按所需功率最大的支路进行计算,为此,先不计动能项(长距离输送时动能项常可忽略不计),并以地面作为位能基准面,则3、4点的机械能为:

可见,Et3>

Et4,又通向设备一的支路比通向设备二的支路长,所以有可能设备一所需的外加功率大。

故下面先按支路23进行设计。

在2、3间列机械能衡算方程:

将Et3=433.4J/kg,?

=0.038,l23=50m,d23=0.07m,

m/s代入得:

再在2、4间列机械能衡算方程:

将有关数据代入得:

m/s,

kg/s=22514kg/h?

6400kg/h

可见,当通向设备一的支路满足流量要求时,另一支路的流量便比要求的大,这个问题可通过将该支路上的阀门关小来解决。

所以,按支路23进行设计的设想是正确的。

下面求所需外加有效功率。

在1、2间列机械能衡算方程:

将z1=5m,p1=5.0?

104Pa,Et2=449.8J/kg,?

=0.038,l12=8m,d12=0.1m,

泵的有效功率:

W?

1.58kW

例1-12操作型问题分析

如图1-41所示为配有并联支路的管路输送系统,假设总管直径均相同,现将支路1上的阀门k1关小,则下列流动参数将如何变化?

(1)总管流量V及支管1、2、3的流量V1、V2、V3;

(2)压力表读数pA、pB。

(1)总管及各支管流量分析

取管出口外侧截面为2-2面,沿支路1在1-1面与2-2面间列机械能衡算方程(参见式1-133):

(1)

式中

B1A、B1、BB2分别代表总管段1A、支路1、总管段B2的阻力特性,由其表达式可见,其值与摩擦因数、管长、局部阻力当量长度及管径大小有关,也就是说,与管路状况有关。

于是,式

(1)可改写成:

同理,分别沿支路2、3在1-1面与2-2面间列机械能衡算方程得:

(3)

(4)

式中,B1A、BB2表达式同上,

再由并联管路的特点可知:

(5)

由式

(2)、(3)、(4)分别导出V1、V2、V3的表达式,然后代入式(5),得:

(6)

当阀门k1关小时,1支路的局部阻力系数增大,使B1增大,而式(6)中Et1、Et2、B2、B3、B1A、BB2均不变(?

变化很小,可视为常数),故由式(6)可判断出总管流量V减小。

根据V减小及式(3)、式(4)可推知,支路2、3的流量V2、V3均增大,而由式(5)可知V1减小。

(2)压力表读数pA、pB的变化分析

由1-1面与A之间的机械能衡算Et1=EtA+wf1A可知,当阀门k1关小时,u减小,wf1A减小,故EtA增大,而EtA中位能不变、动能减小,故压力能必增大,即pA增大。

而由B与2-2面间的机械能衡算,得:

(7)

当阀门k1关小时,式中z2、zB、p2、?

、l和d均不变,而u减小,故pB减小。

本例表明,并联管路上的任一支管局部阻力系数变大,必然导致该支管和总管内流量减小,该支管上游压力增大,下游压力减小,而其它并联支管流量增大。

这一规律与简单管路在同样变化条件下所遵循的规律一致(见例1-9)。

注意:

以上规律适用于并联支路摩擦损失与总管摩擦损失相当的情形,若总管摩擦损失很小可忽略,则任一支管的局部阻力的变化对其它支管就几乎没有影响。

例1-13操作型问题计算

高位槽中水经总管流入两支管1、2,然后排入大气,测得当阀门k、k1处在全开状态而k2处在1/4开度状态时,支管1内流量为0.5m3/h,求支管2中流量。

若将阀门k2全开,则支管1中是否有水流出?

已知管内径均为30mm,支管1比支管2高10m,MN段直管长为70m,N1段直管长为16m,N2段直管长为5m,当管路上所有阀门均处在全开状态时,总管、支管1、2的局部阻力当量长度分别为?

le=11m,?

le1=12m,?

le2=10m。

管内摩擦因数?

可取为0.025。

(1)支管2中流量

在0-0面与1-1面间列机械能衡算方程:

将z0?

z1=20?

10=10m,?

=0.025,l+?

le=70+11=81m,d=0.03m,l1+?

le1=16+12=28m,

u=1.7m/s

总管流量

m3/s=4.3m3/h

m3/h

(2)阀门k2全开时

支管2上的阀门k2全开后,管路系统总阻力下降,因而总管内流量V将增大。

在0-0截面与N处应用机械能衡算式不难得知N处的压力下降,所以支管1内流量V1将减小,甚至有可能导致V1=0。

假设支管1中无水流出,于是,由0-0与2-2间的机械能衡算可知:

u=2.21m/s

再由N处与2-2截面间的机械能衡算可知:

可见,EtN<

Et1,支管1中无水流出的假设是正确的。

若EtN?

Et1,则支管1中有水流出,原假设错误,此时需按分支管路重新进行计算

【例1-1】已知硫酸与水的密度分别为1830kg/m3与998kg/m3,试求含硫酸为60%(质量)的硫酸水溶液的密度为若干。

解:

根据式1-4

=(3.28+4.01)10-4=7.29×

10-4

ρm=1372kg/m3

【例1-2】已知干空气的组成为:

O221%、N278%和Ar1%(均为体积%),试求干空气在压力为9.81×

104Pa及温度为100℃时的密度。

首先将摄氏度换算成开尔文

100℃=273+100=373K

再求干空气的平均摩尔质量

Mm=32×

0.21+28×

0.78+39.9×

0.01

=28.96kg/m3

根据式1-3a气体的平均密度为:

【例1-3】本题附图所示的开口容器内盛有油和水。

油层高度h1=0.7m、密度ρ1=800kg/m3,水层高度h2=0.6m、密度ρ2=1000kg/m3。

(1)判断下列两关系是否成立,即pA=p'

ApB=p'

B

(2)计算水在玻璃管内的高度h。

(1)判断题给两关系式是否成立pA=p'

A的关系成立。

因A与A'

两点在静止的连通着的同一流体内,并在同一水平面上。

所以截面A-A'

称为等压面。

pB=p'

B的关系不能成立。

因B及B'

两点虽在静止流体的同一水平面上,但不是连通着的同一种流体,即截面B-B'

不是等压面。

(2)计算玻璃管内水的高度h由上面讨论知,pA=p'

A,而pA=p'

A都可以用流体静力学基本方程式计算,即

pA=pa+ρ1gh1+ρ2gh2

pA'

=pa+ρ2gh

于是pa+ρ1gh1+ρ2gh2=pa+ρ2gh

简化上式并将已知值代入,得

800×

0.7+1000×

0.6=1000h

解得h=1.16m

【例1-4】如本题附图所示,在异径水平管段两截面(1-1'

、2-2’)连一倒置U管压差计,压差计读数R=200mm。

试求两截面间的压强差。

因为倒置U管,所以其指示液应为水。

设空气和水的密度分别为ρg与ρ,根据流体静力学基本原理,截面a-a'

为等压面,则

pa=pa'

又由流体静力学基本方程式可得

pa=p1-ρgM

pa'

=p2-ρg(M-R)-ρggR

联立上三式,并整理得

p1-p2=(ρ-ρg)gR

由于ρg《ρ,上式可简化为

p1-p2≈ρgR

所以p1-p2≈1000×

9.81×

0.2=1962Pa

【例1-5】如本题附图所示,蒸汽锅炉上装置一复式U形水银测压计,截面2、4间充满水。

已知对某基准面而言各点的标高为z0=2.1m,z2=0.9m,z4=2.0m,z6=0.7m,z7=2.5m。

试求锅炉内水面上的蒸汽压强。

按静力学原理,同一种静止流体的连通器内、同一水平面上的压强相等,故有

p1=p2,p3=p4,p5=p6

对水平面1-2而言,p2=p1,即

p2=pa+ρig(z0-z1)

对水平面3-4而言,

p3=p4=p2-ρg(z4-z2)

对水平面5-6有

p6=p4+ρig(z4-z5)

锅炉蒸汽压强p=p6-ρg(z7-z6)

p=pa+ρig(z0-z1)+ρig(z4-z5)-ρg(z4-z2)-ρg(z7-z6)

则蒸汽的表压为

p-pa=ρig(z0-z1+z4-z5)-ρg(z4-z2+z7-z6)

=13600×

(2.1-0.9+2.0-0.7)-1000×

(2.0-0.9+2.5-0.7)

=3.05×

105Pa=305kPa

【例1-6】某厂要求安装一根输水量为30m3/h的管路,试选择合适的管径。

根据式1-20计算管径

d=

式中Vs=

m3/s

参考表1-1选取水的流速u=1.8m/s

查附录二十二中管子规格,确定选用φ89×

4(外径89mm,壁厚4mm)的管子,其内径为:

d=89-(4×

2)=81mm=0.081m

因此,水在输送管内的实际流速为:

【例1-7】在稳定流动系统中,水连续从粗管流入细管。

粗管内径d1=10cm,细管内径d2=5cm,当流量为4×

10-3m3/s时,求粗管内和细管内水的流速?

根据式1-20

根据不可压缩流体的连续性方程

u1A1=u2A2

由此

u2=4u1=4×

0.51=2.04m/s

【例1-8】将高位槽内料液向塔内加料。

高位槽和塔内的压力均为大气压。

要求料液在管内以0.5m/s的速度流动。

设料液在管内压头损失为1.2m(不包括出口压头损失),试求高位槽的液面应该比塔入口处高出多少米?

取管出口高度的0-0为基准面,高位槽的液面为1-1截面,因要求计算高位槽的液面比塔入口处高出多少米,所以把1-1截面选在此就可以直接算出所求的高度x,同时在此液面处的u1及p1均为已知值。

2-2截面选在管出口处。

在1-1及2-2截面间列柏努利方程:

式中p1=0(表压)高位槽截面与管截面相差很大,故高位槽截面的流速与管内流速相比,其值很小,即u1≈0,Z1=x,p2=0(表压),u2=0.5m/s,Z2=0,

/g=1.2m

将上述各项数值代入,则

9.81x=

+1.2×

9.81

x=1.2m

计算结果表明,动能项数值很小,流体位能的降低主要用于克服管路阻力。

【例1-9】20℃的空气在直径为80mm的水平管流过。

现于管路中接一文丘里管,如本题附图所示。

文丘里管的上游接一水银U管压差计,在直径为20mm的喉颈处接一细管,其下部插入水槽中。

空气流过文丘里管的能量损失可忽略不计。

当U管压差计读数R=25mm、h=0.5m时,试求此时空气的流量为若干m3/h。

当地大气压强为101.33×

103Pa。

文丘里管上游测压口处的压强为

p1=ρHggR=13600×

0.025

=3335Pa(表压)

喉颈处的压强为

p2=-ρgh=-1000×

0.5=-4905Pa(表压)

空气流经截面1-1'

与2-2'

的压强变化为

故可按不可压缩流体来处理。

两截面间的空气平均密度为

在截面1-1'

之间列柏努利方程式,以管道中心线作基准水平面。

两截面间无外功加入,即We=0;

能量损失可忽略,即

=0。

据此,柏努利方程式可写为

式中Z1=Z2=0

简化得

(a)

据连续性方程u1A1=u2A2

u2=16u1(b)

以式(b)代入式(a),即(16u1)2-

=13733

解得u1=7.34m/s

空气的流量为

【例1-10】水在本题附图所示的虹吸管内作定态流动,管路直径没有变化,水流经管路的能量损失可以忽略不计,试计算管内截面2-2'

、3-3'

、4-4'

和5-5'

处的压强。

大气压强为1.0133×

105Pa。

图中所标注的尺寸均以mm计。

为计算管内各截面的压强,应首先计算管内水的流速。

先在贮槽水面1-1'

及管子出口内侧截面6-6'

间列柏努利方程式,并以截面6-6'

为基准水平面。

由于管路的能量损失忽略不计,

=0,故柏努利方程式可

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 其它语言学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1