电磁感应与功能分析Word文件下载.docx

上传人:b****6 文档编号:20096525 上传时间:2023-01-16 格式:DOCX 页数:15 大小:203.94KB
下载 相关 举报
电磁感应与功能分析Word文件下载.docx_第1页
第1页 / 共15页
电磁感应与功能分析Word文件下载.docx_第2页
第2页 / 共15页
电磁感应与功能分析Word文件下载.docx_第3页
第3页 / 共15页
电磁感应与功能分析Word文件下载.docx_第4页
第4页 / 共15页
电磁感应与功能分析Word文件下载.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

电磁感应与功能分析Word文件下载.docx

《电磁感应与功能分析Word文件下载.docx》由会员分享,可在线阅读,更多相关《电磁感应与功能分析Word文件下载.docx(15页珍藏版)》请在冰豆网上搜索。

电磁感应与功能分析Word文件下载.docx

1.电磁感应现象.

(1)产生条件:

回路中的磁通量发生变化.

(2)感应电流与感应电动势:

在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;

若回路不闭合,则只有电动势,而无电流.

(3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路.

2.法拉第电磁感应定律:

E=n,E=BLvsin,

注意瞬时值和平均值的计算方法不同.

3.楞次定律三种表述:

(1)感应电流的磁场总是阻碍磁通量的变化(涉及到:

原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例.

(2)感应电流引起的运动总是阻碍相对运动.

(3)自感电动势的方向总是阻碍原电流变化.

4.相关链接

(1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识.

(2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识.

(3)能的转化与守恒定律.在物理学研究的问题中,能量是一个非常重要的课题,能量守恒是自然界的一个普遍的、重要的规律。

在电磁感应现象中,由磁生电并不是创造了电能,而只是机械能转化为电能而已。

在力学中就已经知道:

功是能量转化的量度。

那么在机械能转化为电能的电磁感应现象中,是什么力在做功呢?

是安培力在做功,在电学中,安培力做正功,是将电能转化为机械能(电动机),安培力做负功,是将机械能转化为电能(发电机),必须明确发生电磁感应现象中,是安培力做功导致能量的转化。

(1)由

决定的电磁感应现象中,无论磁场发生的增强变化还是减弱变化,磁场都通过感应导体对外输出能量(指电路闭合的情况下,下同)。

磁场增强时,是其它形式的能量转化为磁场能中的一部分对外输出;

磁场子削弱时,是消耗磁场自身储存的能量对外输出。

(2)由

决定的电磁感应现象中,由于磁场本身不发生变化,一般认为磁场并不输出能量,而是其它形式的能量,借助安培的功(做正功、负功)来实现能量的转化。

(3)解决这类问题的基本方法:

用法拉第电磁感应定律和楞次定律确定感应电动的大小和方向;

画出等效电路,求出回路中电阻消耗电功率表达式;

分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的变化所满足的方程。

四:

典型例析

例1.如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。

磁感应强度为B的匀强磁场方向垂直于纸面向外。

金属棒ab的质量为m,与导轨接触良好,不计摩擦。

从静止释放后ab保持水平而下滑。

试求ab下滑的最大速度vm

解:

释放瞬间ab只受重力,开始向下加速运动。

随着速度的增大,感应电动势E、感应电流I、安培力F都随之增大,加速度随之减小。

当F增大到F=mg时,加速度变为零,这时ab达到最大速度。

,可得

这道题也是一个典型的习题。

要注意该过程中的功能关系:

重力做功的过程是重力势能向动能和电能转化的过程;

安培力做功的过程是机械能向电能转化的过程;

合外力(重力和安培力)做功的过程是动能增加的过程;

电流做功的过程是电能向内能转化的过程。

达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。

这时重力的功率等于电功率也等于热功率。

进一步讨论:

如果在该图上端电阻右边安一只电键,让ab下落一段距离后再闭合电键,那么闭合电键后ab的运动情况又将如何?

(无论何时闭合电键,ab可能先加速后匀速,也可能先减速后匀速,但最终稳定后的速度总是一样的)。

例2.如图所示,U形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R。

从t=0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B=kt,(k>

0)那么在t为多大时,金属棒开始移动?

=kL1L2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于安培力F=BIL∝B=kt∝t,随时间的增大,安培力将随之增大。

当安培力增大到等于最大静摩擦力时,ab将开始向左移动。

这时有:

例3.如图所示,用丝线悬挂闭合金属环,悬于O点,虚线左边有匀强磁场,右边没有磁场。

金属环的摆动会很快停下来。

试解释这一现象。

若整个空间都有向外的匀强磁场,会有这种现象吗?

只有左边有匀强磁场,金属环在穿越磁场边界时,由于磁通量发生变化,环内一定会有感应电流产生,根据楞次定律将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象。

当然也可以用能量守恒来解释:

既然有电流产生,就一定有一部分机械能向电能转化,最后电流通过导体转化为内能。

若空间都有匀强磁场,穿过金属环的磁通量反而不变化了,因此不产生感应电流,因此也就不会阻碍相对运动,摆动就不会很快停下来。

[拓展:

(1)此时摆角不大于50时,它的振动周期相对没有磁场时有什么变化?

(2)如果线框换成一个带电小球,它的振动周期相对没有磁场时有什么不同。

(3)如果线框换成带电小球,匀强磁场换成竖直方向的匀强电场,相对没有电场,它的振动周期有什么不同?

]

例4如图所示,质量为m、边长为l的正方形线框,从有界的匀强磁场上方由静止自由下落,线框电阻为R。

匀强磁场的宽度为H(l<H),磁感强度为B,线框下落过程中ab边与磁场边界平行且沿水平方向。

已知ab边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是

(1)ab边刚进入磁场时与ab边刚出磁场时的速度大小;

(2)cd边刚进入磁场时,线框的速度大小;

(3)线框进入磁场的过程中,产生的热量。

[解

(1)由题意可知ab边刚进入磁场与刚出磁场时的速度相等,设为v1,则结线框有:

 ε=Blv1I=ε/R  F=BIl

且F-mg=mg/3

解得速度v1为:

v1=4mgR/3B2l2

  

(2)设cd边刚进入磁场时速度为v2,则cd边进入磁场到ab边刚出磁场应用动能定理得:

解得:

(3)由能和转化和守恒定律,可知在线框进入磁场的过程中有

解得产生的热量Q为:

Q=mgH]

例5如图所示,在倾角为θ的光滑斜面上存在着两个磁感强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L.一个质量为m、边长也为L的正方形线框(设电阻为R)以速度v进入磁场时,恰好作匀速直线运动。

若当ab边到达gg1与ff1中间位置时,线框又恰好作匀速直线运动,则:

(1)当ab边刚越过ff1时,线框加速度的值为多少?

(2)求线框从开始进入磁场到ab边到达gg1和ff1中点的过程中产生的热量是多少?

[解析:

(1)ab边刚越过ee1即作匀速直线运动,表明线框此时受到的合外力为零,即:

在ab边刚越过ff1时,ab、cd边都切割磁感线产生电势,但线框的运动速度不能突变,则此时回路中的总感应电动势为

故此时线框加速度为:

(2)设线框再作匀速直线运动的速度为V1,则:

从线框越过ee1到线框再作匀速直线运动过程中,设产生的热量为Q,则由能量守恒定律得:

五:

针对训练

1.如图所示,匀强磁场和竖直导轨所在面垂直,金属棒ab可在导轨上无摩擦滑动,在金属棒、导轨和电阻组成的闭合回路中,除电阻R外,其余电阻均不计,在ab下滑过程中:

[]

A.由于ab下落时只有重力做功,所以机械能守恒.

B.ab达到稳定速度前,其减少的重力势能全部转化为电阻R的内能.

C.ab达到稳定速度后,其减少的重力势能全部转化为电阻R的内能.

D.ab达到稳定速度后,安培力不再对ab做功.

2.如图所示,ABCD是固定的水平放置的足够长的U形导轨,整个导轨处于竖直向上的匀强磁场中,在导轨上架着一根金属棒ab,在极短时间内给棒ab一个水平向右的速度,ab棒开始运动,最后又静止在导轨上,则ab在运动过程中,就导轨是光滑和粗糙两种情况相比较()

整个回路产生的总热量相等

安培力对ab棒做的功相等

安培力对ab棒的冲量相等

电流通过整个回路所做的功相等

3.如图所示,质量为M的条形磁铁与质量为m的铝环,都静止在光滑的水平面上,当在极短的时间内给铝环以水平向右的冲量I,使环向右运动,则下列说法不正确的是()

A.在铝环向右运动的过程中磁铁也向右运动

B.磁铁运动的最大速度为I/(M+m)

C.铝环在运动过程中,能量最小值为ml2/2(M+m)2

D.铝环在运动过程中最多能产生的热量为I2/2m

4.如图所示,在光滑的水平面上,有竖直向下的匀强磁场,分布在宽度为L的区域里,现有一边长为a(a<

L)的正方形闭合线圈刚好能穿过磁场,则线框在滑进磁场过程中产生的热量Q1与滑出磁场过程中产生的热量Q2之比为()

A.1:

1B.2:

1

C.3:

1D.4:

5.如图所示,沿水平面放G一宽50cm的U形光滑金属框架.电路中电阻R=2.0Ω,其余电阻不计,匀强磁场B=0.8T,方向垂直于框架平面向上,金属棒MN质量为30g,它与框架两边垂直,MN的中点O用水平的绳跨过定滑轮系一个质量为20g的砝码,自静止释放砝码后,电阻R能得到的最大功率为w.

6.如图所示,正方形金属框ABCD边长L=20cm,质量m=0.1kg,电阻R=0.1Ω,吊住金属框的细线跨过两定滑轮后,其另一端挂着一个质量为M=0.14kg的重物,重物拉着金属框运动,当金属框的AB边以某一速度进入磁感强度B=0.5T的水平匀强磁场后,即以该速度v做匀速运动,取g=10m/s2,则金属框匀速上升的速度v=m/s,在金属框匀速上升的过程中,重物M通过悬线对金属框做功J,其中有J的机械能通过电流做功转化为内能.

7.如图所示,两根固定在水平面上的光滑平行金属导轨MN和PQ,一端接有阻值为R的电阻,处于方向竖直向下的匀强磁场中。

在导轨上垂直导轨跨放质量为m的金属直杆,金属杆的电阻为r,金属杆与导轨接触良好、导轨足够长且电阻不计。

金属杆在垂直于杆的水平恒力F作用下向右匀速运动时,电阻R上消耗的电功率为P,从某一时刻开始撤去水平恒力F去水平力后:

(1)当电阻R上消耗的功率为P/4时,金属杆的加速度大小和方向。

(2)电阻R上产生的焦耳热。

8.如图甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B,边长为f的正方形金属框abcd(下简称方框)在光滑的水平地面上,其外侧套着一个与方框边长相同的U形金属框架MNPQ(下简称U形框)U形框与方框之间接触良好且无摩擦,两个金属杠每条边的质量均为m,每条边的电阻均为r.

将方框固定不动,用力拉动u形框使它以速度v0垂直NQ边向右匀速运动,当U形框的MP端滑至方框的最右侧,如图乙所示时,方框上的bd两端的电势差为多大?

此时方框的热功率为多大?

若方框不固定,给U形框垂直NQ边向右的初速度v0,如果U形框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?

若方框不固定,给U形框垂直NQ边向右的初速度v(v>

v0),U形框最终将与方框分离,如果从U型框和方框不再接触开始,经过时间t方框最右侧和U型框最左侧距离为s,求金属框框分离后的速度各多大?

9.光滑曲面与竖直平面的交线是抛物线,如图所示,抛物的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中虚线所示),一个小金属环从抛物线上y=b(b<

a)处以速度v沿抛物线下滑,假设抛物线足够长,金属环沿抛物线下滑后产生的焦耳热总量是()

10.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,用水平恒力F把ab棒从静止起向右拉动的过程中①恒力F做的功等于电路产生的电能;

②恒力F和摩擦力的合力做的功等于电路中产生的电能;

③克服安培力做的功等于电路中产生的电能;

④恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和以上结论正确的有()

A.①②B.②③C.③④D.②④

11.图中a1blcldl和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的a1b1段与a2b2段是竖直的,距离为ll;

cldl段与c2d2段也是竖直的,距离为l2。

xly1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为ml和m2,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R,F为作用于金属杆x1yl上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

12.如下图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为l,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为ml、m2和R1、R2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:

杆1被外力拖动,以恒定的速度v0沿导轨运动;

达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。

参考答案

例1.解:

当F增大到F=mg时,加速度变为零这时ab达到最大速度。

例2.解:

例3.解:

例4

例5[解析:

1.答案:

C

解析:

下滑过程有安培力做功,机械能不守恒;

ab达到稳定速度,重力等于安培力,故C正确.

2.答案:

A

解析:

两种情况下产生的总热量,都等于金属棒的初动能.

3.答案:

D

铝环向右运动时,环内感应电流的磁场与磁铁产生相互作用,使环做减速运动,磁铁向右做加速运动,待相对静止后,系统向右做匀速运动,由I=(m+M)v,得v=I/(m+M),即为磁铁的最大速度,环的最小速度,其动能的最小值为m/2·

{I/(m+M)}2,铝环产生的最大热量应为系统机械能的最大损失量,I2/2m-I2/2(m+M)=MI2/2m(m+M).

4.答案:

这是一道选用力学规律求解电磁感应的好题目,线框做的是变加速运动,不能用运动学公式求解,那么就应想到动能定理,设线框刚进出时速度为v1和v2,则第一阶段产生的热量

,第二阶段产生的热量Q2=mv2/2,只要能找出v1和v2的关系就能找到答案,由动量定理可得

5.答案:

0.5W

由题意分析知,当砝码加速下落到速度最大时,砝码的合外力为零,此时R得到功率最大,为mg=BImaxL①

Pmax=I2maxR②

由式①②得Pmax=(mg/BL)2R=0.5W

6.答案:

4;

0.28;

0.08

F安=(M-m)g,转化的内能=F安L

7.解析:

(1)撤去F之前,设通过电阻R的电流为I,则金属杆受到的安培力大小F安=BIL=F.撤去F之后,由P=I2R知,当电阻R上消耗的电功率为P/4时,通过R的电流I'

=I/2,则金属杆受到的安培力F’安=BI'

L=F/2,方向水平向左,由牛顿第二定律得,

.方向水平向左.

(2)撤去F后,金属杆在与速度方向相反的安培力作用下,做减速运动直到停下。

设匀速运动时金属杆的速度为v,则I2(R+r)=Fv,又P=I2R,解得

由能量守恒可得,撤去F后,整个电路产生的热量

则电阻R上产生的焦耳热

8.解析:

(1)U形框向右运动时,NQ边相当于电源,产生的感应电动势E=Blv0,当如图乙所示位置时,方框bd之间的电阻为

U形框连同方框构成的闭合电路的总电阻为

闭合电路的总电流为

根据欧姆定律可知,bd两端的电势差为:

Ubd=

方框中的热功率为:

(2)在U形框向右运动的过程中,U形框和方框组成的系统所受外力为零,故系统动量守恒,设到达图示位置时具有共同的速度v,根据动量守恒定律

根据能量守恒定律,U形框和方框组成的系统损失的机械能等于在这一过程中两框架上产生的热量,即

(3)设U形框和方框不再接触时方框速度为v1,u形框的速度为v2:

,根据动量守恒定律,有3mv=4mvI+3mv2……两框架脱离以后分别以各自的速度做匀速运动,经过时间t方框最右侧和U形框最左侧距离为s,即(v2-v1)t=s联立以上两式,解得

9.【解析】小金属环进入或离开磁场时,磁通量会发生变化,并产生感应电流,当小金属环全部进入磁场后,不产生感应电流,由能量定恒可得产生的焦耳热等干减少的机械能即

10.【解析】在此运动过程中做功的力是拉力、摩擦力和安培力,三力做功之和为棒ab动能增加量,其中安培力做功将机械能转化为电能,故选项C是正确.

11.【解析】设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。

由法拉第电磁感应定律,回路中的感应电动势的大小ε=B(l2-l1)v①,回路中的电流I=ε/R②,电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x1yl的安培力为f1=Bl1I,③,方向向上,作用于杆x2y2的安培力f2=Bl2I④,方向向下,当杆作匀速运动时,根据牛顿第二定律有F-

本题考查法拉第电磁感应定律、欧姆定律、牛顿运动定律、焦耳定律等规律的综合应用能力.

12.【解析】解法一:

设杆2的运动速度为v,由于两杆运动时,两杆和导轨构成的回路的磁通量发生变化,产生感应电动势ε=Bl(v0-v)①,感应电流I=ε/(R1+R2)②,杆2运动受到的安培力等于摩擦力BIl=μm2g③,导体杆2克服摩擦力做功的功率P=μm2gv④,解得P=μm2g[v0-μm2g(R1+R2)/B2l2⑤

解法二:

以F表示拖动杆1的外力,表示回路的电流,达到稳定时,对杆1有F-μm1g-BIl①,对杆2有BIl-μm2g=0、②,外力的功率PF=Fv0③,以P表示杆2克服摩

本题主要考查考生应用电磁感应定律、欧姆定律和牛顿运动定律解决力电综合问题的能力.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1