植物生理学简答的题目整理Word格式文档下载.docx

上传人:b****5 文档编号:19980269 上传时间:2023-01-13 格式:DOCX 页数:25 大小:45.23KB
下载 相关 举报
植物生理学简答的题目整理Word格式文档下载.docx_第1页
第1页 / 共25页
植物生理学简答的题目整理Word格式文档下载.docx_第2页
第2页 / 共25页
植物生理学简答的题目整理Word格式文档下载.docx_第3页
第3页 / 共25页
植物生理学简答的题目整理Word格式文档下载.docx_第4页
第4页 / 共25页
植物生理学简答的题目整理Word格式文档下载.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

植物生理学简答的题目整理Word格式文档下载.docx

《植物生理学简答的题目整理Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《植物生理学简答的题目整理Word格式文档下载.docx(25页珍藏版)》请在冰豆网上搜索。

植物生理学简答的题目整理Word格式文档下载.docx

指水分从一个细胞移动到另一个细胞,要两次经过质膜的方式。

共质体途径:

指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质的方式。

6、简述植物体内水分向上运输的动力和产生原因。

(世界最高的什么树,为什么水分和营养物质能运输到叶子上?

植物体内水分向上运输的动力是根压和蒸腾拉力。

精彩文档

根压产生的原因:

植物根系从土壤溶液中吸收离子,离子通过一系列途径被释放到木质部导管中。

内皮层细胞相当于皮层和导管间的半透膜。

离子在导管内引起导管内渗透压下降,水势因此也下降,从而在内皮层内外建立了水势梯度,水分沿着水势梯度进入导管并因此而产生乐正的净水压,即根压。

根压推动水分向上运输。

蒸腾拉力产生的原因:

当植物叶片进行蒸腾作用时,水分从气孔蒸腾散失到大气中,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,失水的细胞便会向相邻的水势较高的叶肉细胞吸水。

如此传递,接近叶脉导管的细胞向叶脉导管、茎导管、根导管、和根部吸水。

这样便从叶片到根系产生了一个由低到高的水势梯度,促使根系从土壤吸水。

这种因蒸腾作用所产生的吸水的能力就是蒸腾拉力。

7、影响蒸腾作用的因素有那些?

1、内部因素:

气孔数量、七孔大小和气孔阻力直接影响蒸腾速率。

气孔阻力包括气孔和气孔下腔的状况,如气孔的形状、气孔的体积和气孔的开度。

在一定范围内,气孔数量多、气孔阻力小,蒸腾作用强。

2、外部因素:

(1)光照:

光照能提高大气和叶片的温度,光照也促使气孔张开,从而增强蒸腾作用;

(2)大气相对湿度:

大气相对湿度低,蒸腾作用增强,反之则相反;

(3)温度:

在大气相对湿度相同时,湿度增高,蒸腾作用增强。

(4)风速:

微风能降低气孔外的水蒸气,因此可促进蒸腾作用;

强风能引起气孔关闭,气孔阻力增大,蒸腾作用减弱。

8、为什么淹水后植物会发生萎蔫的现象/

植物因失水过多或吸水不足会使细胞膨压降低而造成萎蔫,植物可以通过减少蒸腾和增加吸水力来维持正常的膨压即保持体内水分平衡,以避免萎蔫。

水涝时,土壤往往缺氧,根系有氧呼吸受阻,影响根系对矿物质的正常吸收,根系对离子的主动吸收受阻(无氧呼吸产生的能量少),根内外不能形成溶质势差(水势差),植物与土壤环境之间的水势梯度受影响,从而抑制了根系对水分的继续吸收;

在缺氧时,根系进行无氧呼吸,在根际周围产生或累积乙醇等有害物质,使根系受损,限制根系的生长,减少根的吸收面积,并使根部输导水分的能力丧失。

因此,在

水涝时,尽管植物根系水分供应充足,但由于根系环境缺氧而不能进行正常的水分吸收,表现出萎蔫现象

9.试述在光照条件下气孔运动的机理(可能论述题)。

气孔运动的渗透调节机制:

气孔运动主要与保卫细胞的水势(膨压)变化有关,保卫细胞水势提高则气孔打开,水势降低则气孔关闭。

目前主要有淀粉-蔗糖转化学说,K+积累学说和苹果酸代谢学说解释气孔运动机制。

(1)淀粉-糖变化学说。

气孔运动是由于保卫细胞中淀粉和蔗糖的转化而形成的渗透是改变造成的。

在光照下保卫细胞进行光合作用合成可溶性糖。

另外由于光合作用消耗CO2使保卫细胞pH值升高,淀粉磷酸化酶水解细胞中淀粉形成可溶性糖,细胞水势下降,当保卫细胞水势低于周围的细胞水势时,便吸水膨胀使气孔张开。

(2)K+离子吸收学说。

在光照下,保卫细胞叶绿体通过光合磷酸化合成ATP,活化了保卫细胞质膜上的H+泵ATP酶,H+泵ATP酶分解光合磷酸化和氧化磷酸化产生的ATP,并将H+分泌到细胞壁,结果产生跨膜的H+浓度梯度和膜电位差,引起保卫细胞质膜上的K+通道打开,外面的K+进入到保卫细胞中来,Cl-也伴随着k+进入,以保证保卫细胞的电中性,保卫细胞中积累较多的k+和Cl-,水势降低。

保卫细胞吸水,气孔就张开。

(3)苹果酸生成学说,在光下保卫细胞内的CO2被利用,pH值上升,剩余的CO2就转变成重碳酸盐,淀粉通过糖酵解作用产生的磷酸烯醇式丙酮酸PEP在PEP羧化酶作用下与HCO3-作用形成草酰乙酸,

然后还原成苹果酸,保卫细胞苹果酸含量升高,降低水势,保卫细胞吸水,气孔张开。

10、影响气孔运动的外界因素(看一下就行):

1、光照:

光照引起气孔运动的主要环境因素。

多数植物的气孔在光照下张开,黑暗中关闭;

景天科植物的气孔例外,白天关闭,晚上张开。

2、温度:

在一定的温度范围内,气孔开度一般随温度的上升而增大,在30度左右达到最大气孔开度,35度以上的高温会使气孔开度变小。

3、水分:

叶片水势下降,其空开度减少或关闭。

4、CO2:

低CO2浓度促使气孔张开,高浓度使气孔迅速关闭。

5、风:

大风引起气孔关闭

6、植物激素:

ABA促使气孔关闭,

11、农谚讲“旱长根,水长苗”是什么意思?

道理何在?

(看一下就行)

这是指水分供应状况对植物根冠比调节的一个形象比喻。

植物地上部生长和消耗的大量水分,完全依靠根系供应,土壤有效水的供应量直接影响枝叶的生长,因此凡是能增加土壤有效水的措施,必然有利地上部生长;

而地上部生长旺盛,消耗耗大量光合产物,使输送到根系扔机物减少,又会削弱根系的生长,加之如果水分过多,通气不良,也会限制根系活动,这些都将使根冠比减少。

干旱时,由于根系的水分环境比地上部好,根系仍能较好地生长;

而地上部则由于抽水,枝叶生长明显受阻,光合产物就可输入根系,有利根系生长,使根冠比增大。

所以水稻栽培中,适当落干晒田,可对促进根系生长,增加根冠比。

1、植物必需的矿质元素要具备哪些条件?

(1)缺乏该元素植物生长发育发生障碍,不能完成生活史。

(2)除去该元素则表现专一的缺乏症,而且这种缺乏症是可以预防和恢复。

(3)该元素在植物营养生理上应表现直接的效果而不是间接的。

2、简述植物必需矿质元素在植物体内的生理作用。

(1)是细胞结构物质的组成部分。

(2)是植物生命活动的调节者,参与酶的活动。

(3)起电化学作用,即离子浓度的平衡、胶体的稳定和电荷中和等,有些大量元素不同时具备上述二三个作用,大多数微量元素只具有酶促功能。

3、试述根吸收矿质元素的基本过程(看一下就行)。

(1)把离子吸附在根部细胞表面。

这是通过离子吸附交换过程完成的,这一过程不需要消耗代谢能。

吸附速度很快。

(2)离子进入根的内部。

离子由根部表面进入根部内部可通过质外体,也可通过共质体。

质外体运输只限于根的内皮层以外;

离子与水分只有转入共质体才可进入维管束。

共质体运输是离子通过膜系统(内质网等)和胞间连丝,从根表皮细胞经过内皮层进入木质部,这一过程是主动吸收。

(3)离子进入导管。

可能是主动地有选择性地从导管周围薄壁细胞向导管排入,也可能是离子被动地随水分的流动而进入导管。

4、17种必须元素(看一下)

碳、氧、氢、氮、钾、钙、镁、硫、磷(9个大量元素)、氯、铁、锰、硼、锌、铜、钼、镍(8个微量元素)。

5、植物细胞吸收矿质元素的方式和机理有哪些?

植物对例子的吸收有三种方式:

1、被动运输,是顺着浓度梯度的运输,包括简单扩散和协助扩散;

2、主动运输,一般是逆浓度梯度的运输;

3、是通过胞饮作用来吸收矿质。

矿质元素从膜外转运到膜内主要通过被动运输和主动运输两种方式。

前者不需要代谢提供能量,后者需要代谢提供能量。

两者都可通过载体运输,有载体进行的运输若是顺电化学梯度,则属于被动运输,若是逆电化学势梯度,则属于主动运输。

被动运输有扩散作用和协助扩散两种方式。

扩散作用是指分子或离子沿着化学势或电化学势梯度转移的现象;

协助扩散是小分子物质经膜转运蛋白顺浓度梯度或电化学势梯度的跨膜转运。

矿质元素的主动运输需要ATP提供能量。

1、光合作用有哪些重要意义?

(1)光合作用是制造有机物质的重要途径。

(2)光合作用将太阳能转变为可贮存的化学能。

(3)可维持大气中氧和二氧化碳的平衡。

2、植物的叶片为什么是绿的?

秋天时,叶片为什么又会变黄色或红色?

光合色素主要吸收红光和蓝紫光,对绿光吸收很少,故基呈绿色,秋天树叶变黄是由于低温抑制了叶绿素的生物合成,已形成的叶绿素也被分解破坏,而类胡萝卜素比较稳定,所以叶片呈黄色。

至于红叶,是因为秋天降温,体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成较多的花色素,叶子就呈红色。

3、简述影响叶绿素生物合成的外界因素(记一下黑色的要点就行了)

(1)、光:

光是影响叶绿素形成的主要条件,因为从原叶绿素酯转变为叶绿素酸酯需要光。

但光过强,叶绿素受光氧化而破坏。

(2)、温度:

叶绿素的生物合成是一系列酶促反应,受温度影响;

(3)、营养元素:

氮、镁是叶绿素的组成成分,铁、锰、铜、锌等在叶绿素的生物合成过程中有催化功能或其他间接作用;

(4)、氧:

叶绿素的生物合成过程中需要氧的参与;

(5)水:

缺水不但影响叶绿素的生物合成,而且还促使原叶绿素加速分解,所以干旱时叶片呈黄褐色。

4、C3途径可分为几个阶段?

每个阶段有何作用?

(比较重要)

C3途径可分为三个阶段:

(1)羧化阶段。

CO2被固定,生成了3-磷酸甘油酸,为最初产物。

(2)还原阶段。

利用同化力(NADPH、ATP)将3-磷酸甘油酸还原3—磷酸甘油醛—光合作用中的第一个三碳糖。

(3)更新阶段。

光合碳循环中形成了3—磷酸甘油醛,经过一系列的转变,再重新形成RuBP的过程。

5、作物为什么会有“午休”现象?

(重要)

炎热的夏天,C3植物中午光合作用强度下降的现象称为“午休现象”。

原因主要有:

(1)中午光照强、温度高、大气相对湿度较低,叶片大量失水而造成气孔开度变小或关闭,限制CO2的吸收;

(2)中午的强光对光合作用产生光抑制。

(3)温度升高,CO2浓度降低等导致光呼吸增强。

6、如何理解C4植物比C3植物的光呼吸低?

(可能论述题)(重要)

C4植物,PEP羧化酶对CO2亲和力高,固定CO2的能力强,在叶肉细胞形成C4二羧酸后,再转运到维管束鞘细胞,脱羧后放出CO2(将CO2从叶肉细胞转移到维管束鞘细胞),就起到了CO2泵的作用,增加了CO2浓度,提高了RuBP羧化酶的活性,有利于CO2的固定和还原,不利于乙醇酸形成,不利于

光呼吸进行,所以C3植物光呼吸测定值很低。

而C3植物,在叶肉细胞内固定CO2,叶肉细胞的CO2/O2的比值较低,此时,RuBP加氧酶活性增强,有利于光呼吸的进行,而且C3植物中RuBP羧化酶对CO2亲和力低,光呼吸释放的CO2不易被重新固定。

7、什么是希尔反应?

(可能出名次解释)

离体叶绿体加入具有适当氢接受体的水溶液中,在光下进行光解,并放出氧的反应,称为希尔效应。

8、Rubisco的特点及其对光合作用的重要性(可能出名词解释)

Rubisco是核酮糖-1、5-二磷酸羧化/加氧酶,具有双重催化作用。

在光合作用中,Rubiso催化RUBP的羧化反应,固定CO2,形成3-磷酸甘油酸;

在光呼吸中,Rubisco催化RuBP的加氧反应,产生的磷酸乙醇酸被磷酸酶催化脱去磷酸而生成乙醇酸(即乙醇酸循环);

在CO2/O2比值高的条件下,Rubisco的加氧活性被抑制,催化羧化反应,进行碳同化,当CO2/O2的比值低时,Rubisco的加氧活性表现出来,进行光呼吸。

Rubisco的羧化酶活性和加氧酶活性取决于CO2/O2的比值。

9、光呼吸有何生理意义?

(记一下要点)

①回收碳素。

通过C2碳氧化环可回收乙醇酸中3/4的碳。

2维持C3光合碳还原循环的运转。

在叶片气孔关闭或外界CO2浓度低时,光呼吸释放的CO2能被C3途径再利用,以维持光合碳还原环的运转。

3防止强光对光合机构的破坏作用。

在强光下,光反应中形成的同化力会超过CO2同化的需要,从而使叶绿体中NADPH/NADP、ATP/ADP的比值增高。

同时由光激发的高能电子会传递给O2,形成的超氧阴离子自由基会对光合膜、光合器有伤害作用,而光呼吸可消耗同化力与高能电子,降低超氧阴离子自由基的形成,从而保护叶绿体,免除或减少强光对光合机构的破坏。

10.论述植物光合作用碳同化途径的特点(综合起来的,可以论述题也可以出简答题,需要理解一下,简答题的话用文字简单描述)。

根据光合作用碳同化途径的不同,可以将高等植物区分为三个类群,即C3途径(卡尔文循环或光合碳循环)、C4—二羧酸途径及景天酸代谢途径。

特性

代表植物

C3植物

典型的温带作物,水稻、小麦、大豆、烟草等

C4植物

典型的热带、亚热带作物,玉米、高粱、甘蔗等

景天科(CAM)植物典型的热带干旱地区植物,景天科、仙人掌科、

兰科、凤梨等

叶片结构

维管束鞘细胞不发达,内无叶绿体,无“花环”结构

维管束鞘细胞发达,内有叶绿体,有“花环”结构

肉质叶片,维管束鞘细胞不发达,内无叶绿体,无

CO2固定酶Rubisco(核酮糖-1、5磷

PEPC(磷酸烯醇式丙酮酸羧

“花环”结构

PEPC(磷酸烯醇式丙酮

酸羧化/加氧酶)

化酶)、Rubisco(核酮糖-1、酸羧化酶)、Rubisco(核

催化CO2羧化反应的酶活性

高Rubisco活性

5磷酸羧化/加氧酶)

叶肉细胞中有高PEPC酶活性,维管束鞘细胞中有高

酮糖-1、5磷酸羧化/加氧酶)

暗中有高PEPC酶活性,光下有高Rubisco活性

Rubisco活性

碳同化途径

一条C3途径

在不同细胞中存在两条途径(叶肉细胞中PEPC进行羧化

在不同时间有两条途径(晚上暗下进行PEPC

反应,固定CO2,形成C4酸,羧化反应生成C4酸储存

CO2受体

光合初产物CO2补偿点

光呼吸

光合最适温度耐旱性

蒸腾系数光合产物运输速

RuBP(核酮糖-1、5-二磷酸)

PGA(3-磷酸甘油酸)高

较低,15-30度

相对慢

转移至维管束鞘细胞中,进行脱羧反应,生成CO2,在Rubisco的作用下进行C3反应)

细胞质中PEP(磷酸烯醇式丙酮酸),维管束鞘细胞中RuBP草酰乙酸----苹果酸低

较高30-47

耐旱

相对快

在液泡中,光下Rubisco进行C3反应)

暗下中PEP,光下RuBP

暗下苹果酸,光下PGA

约35

极耐旱

极小

11、矿质元素和光合作用的关系(这道题比较综合,可以出论述题,但我觉得概率不大)植物生命活动所必需的矿质元素,都对光合作用速率有着直接或间接的影响,其表现为:

(1)、叶绿体及叶绿素组分:

N、P、S、Mg、C、H、O;

(2)、影响叶绿素的形成:

N、Mg、Fe、Mn、Cu、Zn;

(1)水的光解放氧:

Mn、Cl、Ca;

(2)光和电子传递:

Fe、Cu、S;

(5)同化力形成:

Mg、P、K、H;

(6)酶活化:

K、Mg、Zn、Mn;

(7)促进光合产物运输:

K、B、P;

(8)光合作用原料:

C、H、O;

(9)影响气孔开放:

K、CL、Ca。

光合作用为矿质元素的吸收提供能力及动力,促进矿质元素的吸收;

同时光合作用形成的同化产物有利于体内矿质元素的运输、同化。

1.试述呼吸作用的生理意义(重要)。

(1)呼吸细作用提供了植物生命活动所需的大部分能量。

呼吸作用释放到的ATP公生命活动所需。

(2)呼吸作用为细胞内其他物质的合成提供原料。

呼吸作用中碳水化合物在被彻底氧化分解成CO2过

程中,产生许多中间产物,这些中间产物是进一步合成蛋白质、核酸、脂肪、激素、维生素、等重要生命物质的原料。

同时这些物质的分解代谢也最终要通过呼吸作用来完成,因此,呼吸作用是植物体内能量和物质的代谢中心。

(3)呼吸作用在植物的抗病免疫方面也具有重要作用。

植物染病时,染病组织不仅呼吸增强,同时呼吸途径也发生变化。

呼吸增强,有利于氧化分解病原菌毒素,消除病害;

呼吸途径改变主要是PPP加强,可导致产生多种抗菌物质,阻止病原菌的侵染。

因此,呼吸作用能增强植物对伤、病的抵抗能力。

2.在呼吸作用中,糖的分解代谢有几条途径?

分别发生于哪个部位?

(看)

有三种条途径:

糖酵解、三羧酸循环和戊糖磷酸途径。

糖酵解和戊糖磷酸途径是在细胞质中进行的;

三羧酸循环在线粒体中进行。

3.呼吸作用与光合作用有何联系?

(看,理解了就行了)

(1)光合作用所需的ADP(供光合磷酸化产生ATP之用)和辅酶NADP+(供产NADPH+H+之用)与呼吸作用所需的ADP和NADP+是相同的。

这两种物质在光合和呼吸作用中可共用。

(2)光合作用的碳循环与呼吸作用的戊糖磷酸途径基本上是正反反应的关系。

它们的中间产物同样是三碳糖(磷酸甘油醛)、四碳糖(磷酸赤藓糖)、五碳糖(磷酸核酮糖、磷酸木酮糖)、六碳糖(磷酸果糖、磷酸葡萄糖)及七碳糖等。

光合作用和呼吸作用之间有许多糖类是可以交替使用的。

(3)呼吸作用产生的CO2(互相利用)给光合作用所利用,而光合作用产生的O2和有机物则供呼吸作用利用。

4.陆生高等植物无氧呼吸过久就会死亡,为什么?

(经常出)

长时间的无氧呼吸会使植物受伤死亡的原因:

第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;

第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;

第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。

作物受涝死亡,

主要原因就在于无氧呼吸时间过久

5.粮食贮藏时要降低呼吸速率还是要提高呼吸速率?

为什么?

(看一下)

降低呼吸速率。

因为呼吸速率高会大量消耗有机物;

呼吸放出的水分会使粮堆湿度增大,粮食“出汗”,呼吸加强;

呼吸放出的热量又使粮温增高,反过来又促使呼吸增强,同时高温高湿使微生物迅速繁殖,最后导致粮食变质。

6.三羧酸循环(TCA)的要点和生理意义是什么?

(我觉得概率不大)

(1)三羧酸循环是植物的有氧呼吸的重要途径。

(2)三羧酸循环一系列的脱羧反应是呼吸作用释放CO2的来源。

一个丙酮酸分子可以产生三个CO2分子;

当外界的CO2浓度增高时,脱氢反应减慢,呼吸作用受到抑制。

三羧酸循环中释放的CO2是来自于水和被氧化的底物。

(3)在三羧酸循环中有5次脱氢,再经过一系列呼吸传递体的传递,释放出能量,最后与氧结合成水。

因此,氢的氧化过程,实际是放能过程。

(4)三羧酸循环是糖、脂肪、蛋白质和核酸及其他物质的共同代谢过程,相互紧密相连。

7.试述氧化磷酸化作用的机理。

氧化磷酸化的机理有很多假说,目前得到较多支持的是米切尔的化学渗透学说。

该学说认为,氧化磷酸化的动力是呼吸电子传递产生的跨线粒体内膜的质子电化学梯度,在质子电化学势梯度推动下合成ATP。

它认为线粒体基质的NADH传递电子给O2的同时,也3次把基质的H+释放到线粒体膜间间隙。

由于内膜不让泵出的H+自由地返回基质。

因此膜外侧[H+]高于膜内侧而形成跨膜pH梯度(△PH),同时也产生跨膜电位梯度(△E)。

这两种梯度便建立起跨膜的电化学势梯度(△μH+),于是使膜间隙的H+通过并激活内膜上FOF1-ATP合成酶(即复合体V),驱动ADP和Pi结合形成ATP。

(这一段基本上就行了)

该学说的要点是:

(1)呼吸电子传递体分为氢传递体和电子传递体,氢传递体既传递电子也传递质子,

电子传递体只传递电子。

(2)氢传递体与电子传递体在线粒体内膜上有特定的位置,彼此间隔交替排列。

(3)氢传递体有质子泵的作用,当氢传递体从线粒体内膜内侧接收从底物传来的的氢后,可将其中的电子传递给其后的电子传递体,而将两个H+泵出内膜,进入膜内空间。

由此产生跨膜H+电化学势梯度,也称为质子动力势,H+电化学势梯度是光和磷酸化的动力。

(4)线粒体膜内空间的H+顺电化学势梯度经ATP合成复合体的H+通道进入线粒体基质时,在ATP合酶的作用下推动ADP和Pi合成ATP。

(这一段是解释过程的,大致可以省去)

8、简述植物的抗氰呼吸及其生理意义(看一下,记住几个要点就行了)

在氰化物存在下,某些植物呼吸不受抑制,所以把这种呼吸称为抗氰呼吸,抗氰呼吸电子传递途径在某些条件下与正常的正常的NADH电子传递途经交替进行,因此,抗氰呼吸又称为交替呼吸途径。

其生理意义为:

(1)促进开花、授粉。

抗氰途径的氧化不与磷酸化偶联,不产生ATP或只产生一个ATP,释放的量热量,从而有助于某些植物花粉的成熟及授粉、受精过程,有利于挥发引诱剂,吸引昆虫授粉。

(2)增加抗性。

植物在逆境胁迫时抗氰呼吸增强,抗氰呼吸的强弱与植物的抗性有密切联系。

(3)能量溢流。

当植物细胞富含糖,而糖酵解和三羧酸循环又进行的很快,他们所提供的电子无法完全经细胞色素途经传递时,交替途径的活性也最高。

因此,交替途经可能是作为一种

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 法学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1