交通运输运输运筹学复习题精编Word格式文档下载.docx
《交通运输运输运筹学复习题精编Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《交通运输运输运筹学复习题精编Word格式文档下载.docx(7页珍藏版)》请在冰豆网上搜索。
12、在网络G中若(,),且,则在增流网络中有边。
13、求最小生成树问题,常用的方法有:
避圈法和___。
14、对壹个排队模型而言,若顾客相继到达间隔时间服从指数分布,平均时间为10分钟,则当某壹位顾客到达后经过了7分钟,下壹位顾客平均仍需要分钟才会到达。
15、排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。
16、在运输网络中,最大流的流值等于的容量。
17、在同壹网络图中,对非确定统筹问题而言,当有几条最长路线存在时取
为关键路线。
18、如果有俩个之上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。
19、在风险型决策问题中,我们壹般采用___来反映每个人对待风险的态度。
20、当通过网络的各边所需的时间已知时,找出从入口到出口所需时间最少的路径的问题被称为网络的问题。
21、.若从壹个图中去掉壹条线后,该图仍是连通图,则该图中壹定含有。
二、选择题:
1、以下不属于线性规划数学模型的基本要素的是()
A、决策变量B目标函数C约束条件D、松弛变量
2、下列数学模型不是线性规划模型的是(其中a,b,c为常数,为可取某壹常数的参变量,x,y为变量)()
ABCD、
3、在图解法中,若目标函数的等值线和可行域的壹条边界重合,则此线性规划问题()
A、有多重解B、无解C、退化D、有唯壹解
4、对偶问题中,若对偶问题可行,而原问题不可行,则()
A、对偶问题的目标函数值无界B、对偶问题退化
C、对偶问题亦不可行D、对偶问题有多重解
5、对偶问题中,若原问题可行,而对偶问题不可行,则()
A、原问题目标函数值无界B、原问题退化
C、原问题亦不可行D、原问题有多重解
6、以下哪种情形反映建立线性规划模型时遗漏掉了约束条件方程()
A、该线性规划问题无可行解B、该线性规划问题有退化解
C、该线性规划问题有多重解D、该线性规划问题有无限解
7、下面能表示俩个约束条件中必须满足壹个的线性规划约束是()
AB
CD
8、下面关于运输问题的叙述不正确的是()
A、实质就是线性规划问题
B、表上作业法实质就是单纯形法
C、运输问题不壹定有最优解
D、基本可行解壹定不包含闭回路
9、壹个运输问题的初始基本可行解的目标函数值为100,经过壹次调整得到另壹个可行解,它的目标函数值为76。
已知调整量为12,则该次调整换入变量的检验数为()
A、2B、-2C、4D、-4
10、使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题
A.有唯壹的最优解B.有无穷多最优解
C.为无界解D.无可行解
11.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中
A.b列元素不小于零B.检验数都大于零
C.检验数都不小于零D.检验数都不大于零
16.关于线性规划的原问题和对偶问题,下列说法正确的是
A.若原问题为无界解,则对偶问题也为无界解
B.若原问题无可行解,其对偶问题具有无界解或无可行解
c.若原问题存在可行解,其对偶问题必存在可行解
D.若原问题存在可行解,其对偶问题无可行解
17.下列叙述不属于解决风险决策问题的基本原则的是
A.最大可能性准则B.渴望水平准则
C.悲观准则D.期望值准则
18.下列说法正确的是
A.线性规划问题的基本解对应可行域的顶点
也必是该问题的可行解
D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解
19、关于在箭线式网络图中关键线路的叙述,不正确的是()
A.线路时差为0的线路称为关键线路
B.从始点出发,由各个总时差为0的活动连续相接,直到终点的线路称为关键线路
C.由最早开始时间和最迟完成时间相等的结点所连接的线路称为关键线路
D.总作业时间最长的线路称为关键线路
三、判断题、
1、线性规划问题的每壹个基本解对应可行域的壹个顶点()。
2、图解法同单纯形法虽然求解的形式不同,但从几何意义上理解,俩者是壹致的()。
3、若线性规划问题存在最优解,则最优解壹定对应可行域边界上的壹个点()。
4、线性规划问题的目标函数值沿梯度方向增加,沿相反方向减少()。
5、线性规划问题的可行解如为最优解,则该可行解壹定是基本可行解()。
6、单纯形法计算中,选取最大正检验数对应的变量作为换入变量,将使其目标函数值得到最快的增长()
7、单纯形法的迭代过程是从壹个可行解转换到目标函数值更大的另壹个可行解()。
8、用单纯形法求解标准形式的线性规划问题时,和>
0对应的变量都能够被选作换入变量()。
9、线性规划问题的任意可行解都能够用全部基本可行解的线性组合表示()。
10、若x,x分别是某壹线性规划问题的最优解,则也是该线性规划问题的最优解,其中为正的实数()
11、任何线性规划问题存在且具有唯壹的对偶问题()。
12、若线性规划的原问题有多重解,则其对偶问题也壹定具有多重解()。
13、对偶问题的对偶问题壹定是原问题()。
14、应用对偶单纯形法计算时,若单纯形表中某壹基变量小于零,又所在行的元素全部大于或等于零,则能够判断其对偶问题具有无界解()。
15、若某种资源的影子价格等于k,在其他条件不变的情况下,该种资源增加5个单位时,相应的目标函数值将增大5k()。
16、在线性规划问题的最优解中,若某壹变量为非基变量,则在原来问题中,无论改变它在目标函数中的系数或各个约束中的相应系数,反映到最终单纯形表中,除该列的数字有变化外,将不会引起其他列数字的变化()。
17、对进行灵敏度分析,就是在最优解基变量保持不变但基变量的取值能够变动的条件下,求出的允许变动范围()。
18、运输问题是壹种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之壹:
有唯壹最优解,有无穷多最优解,无界解,无可行解()。
19、在运输问题中,只要给出壹组含()个非零的,且满足,,,就能够作为壹个初始基本可行解()。
20按最小元素法给出的初始基本可行解,从每壹非基变量空格出发能够找出而且仅能找出唯壹的闭回路()。
21、当所有产地产量和销地的销量均为整数值时,运输问题的最优解也为整数值()。
22、求解0—1规划的隐枚举法是分枝定界法的特例()。
23、用分枝定界法求解壹个整数规划问题时,若已求得壹个不违反任何整数约束的解,则停止分枝()。
24、图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点对点的相对位置、点对点连线的长短曲直等都要严格注意()。
25如图中某点有若干个相邻点,和其距离最远的相邻点为,则边(i,j)必不包含在最小生成树内()。
26、在壹个图G中,当点集V确定后,树图是G中边数最少的连通图()。
27、如图中从至各点均有唯壹的最短路,则连接至其他各点的最短路在去掉重复部分后,恰好构成该图的最小生成树()。
28对于给定的图,把所有顶点连接起来的树图,是唯壹的()。
29、求网络最大流的问题可归结为求解壹个线性规划模型()。
30、若线性规划问题具有可行解,且其可行域有界,则该线性规划问题具有有限个数的最优解()。
31、到达排队系统的顾客为泊松分布,则依次到达的俩顾客之间的间隔时间服从负指数分布。
()
32、结点最早时间同最迟时间相等的点连接的线路就是关键路线()。
33、网络图中任何壹个结点都表示前壹工序的结束是后壹工序的开始()
34、工序的最早开始时间等于该工序箭头事项最早开始时间()。
35、队长是指系统中排队等候的顾客数()。
36、排队系统中,顾客等待时间的分布不受排队服务规则的影响()。
36、关于在箭线式网络图中关键线路是时差为0的线路称为关键线路()×
37、在箭线式网络图中总作业时间最长的线路称为关键线路()√
38、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性()√
39、动态规划的最优性原理保证了从某壹状态开始的未来决策独立于先前已做出的决策()√
40、动态规划的基本方程是将壹个多阶段的决策问题转化为壹系列具有递推关系的单阶段的决策问题()√
41、工序的总时差越大,表明该工序在整个网络中的机动时间就越大()√
42、直接费用的费用斜率越小,则每缩短单位作业时间所增加的直接费用就越小()√
43、若到达排队系统的顾客为泊松流,则依次到达的俩名顾客之间的间隔时间服从负指数分布()√
44、在机器发生故障的概率及工人修复壹台机器的时间分布不变的条件下,由1名工人见管5台机器,或由3名工人联合见管15台机器时,机器因等待工人维修的平均时间不变()×
46、在同壹存储模型中,可能既发生存储费用,又发生短缺费用()√
47、线性规划模型中增加壹个约束条件,可行域的范围壹般将缩小,减少壹个约束条件,可行域的范围壹般将扩大;
()√
48、不管决策问题怎么变化,壹个人的效用曲线总是不变的()×
49、壹旦壹个人工变量在迭代过程中变为非基变量后,该变量及相应列的数字能够从单纯形表中删除,而不影响计算结果()√
50、对壹个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为个()×
51、线性规划可行域的某壹顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优()√
52、根据对偶问题的性质,当原问题为无界解时,对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解()×
53、已知为线性规划的对偶问题的最优解,若>0,说明在最优化生产计划中第i种资源已完全耗尽()√
54、已知为线性规划的对偶问题的最优解,若=0,说明在最优化生产计划中第i种资源已完全耗尽()×
55、表上作业法的实质就是求解运输问题的单纯形法()√
56、如果运输问题单位运价表的某壹行(或某壹列)元素分别乘上壹个常数k,最优调整方案将不会发生变化()√
57、如果在运输问题或转运问题模型中,C都是从产地i到销地j的最小运输费用,则运输问题同转运问题将得到相同的最优解()√
58、在动态规划模型中,问题的阶段数等于问题中的子问题的数目()√
59、动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性()√
60、动态规划的最优性原理保证了从某壹状态开始的未来决策独立于先前已做出的决策()√
61、对壹个动态规划问题,应用顺推或逆推解法可能会得出不同的最优解()×
62、假如壹个线性规划问题含有5个变量和3个约束,则用动态规划方法求解时将划分为3个阶段,每个阶段的状态将由壹个5维的向量组成()×
63、动态规划的基本方程是将壹个多阶段的决策问题转化为壹系列具有递推关系的单阶段的决策问题()√
64、求图的最小支撑树以及求图中壹点至另壹点的最短路问题,都能够归结为求解整数规划问题()√
65、工序的总时差越大,表明该工序在整个网络中的机动时间就越大()√
66、假如到达排队系统的顾客来自俩个方面,分别服从泊松分布,则这俩部分顾客合起来的顾客流仍为泊松分布()√
67、对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流()√
68、在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间将越长()√
69、在机器发生故障的概率及工人修复壹台机器的时间分布不变的条件下,由1名工人见管5台机器,或由3名工人联合见管15台机器时,机器因故障等待工人维修的平均时间不变()×