遗传算法经典MATLAB代码Word下载.docx

上传人:b****5 文档编号:19834559 上传时间:2023-01-10 格式:DOCX 页数:10 大小:18.08KB
下载 相关 举报
遗传算法经典MATLAB代码Word下载.docx_第1页
第1页 / 共10页
遗传算法经典MATLAB代码Word下载.docx_第2页
第2页 / 共10页
遗传算法经典MATLAB代码Word下载.docx_第3页
第3页 / 共10页
遗传算法经典MATLAB代码Word下载.docx_第4页
第4页 / 共10页
遗传算法经典MATLAB代码Word下载.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

遗传算法经典MATLAB代码Word下载.docx

《遗传算法经典MATLAB代码Word下载.docx》由会员分享,可在线阅读,更多相关《遗传算法经典MATLAB代码Word下载.docx(10页珍藏版)》请在冰豆网上搜索。

遗传算法经典MATLAB代码Word下载.docx

%初始化

function 

pop=initpop(popsize,chromlength) 

pop=round(rand(popsize,chromlength));

rand随机产生每个单元为 

{0,1} 

行数为popsize,列数为chromlength的矩阵,

roud对矩阵的每个单元进行圆整。

这样产生的初始种群。

2.2 

计算目标函数值

2.2.1 

将二进制数转化为十进制数

(1)

decodebinary.m

%产生 

[2^n 

2^(n-1) 

... 

1] 

的行向量,然后求和,将二进制转化为十进制

pop2=decodebinary(pop)

[px,py]=size(pop);

%求pop行和列数

for 

i=1:

py

pop1(:

i)=2.^(py-i).*pop(:

i);

end

pop2=sum(pop1,2);

%求pop1的每行之和

2.2.2 

将二进制编码转化为十进制数

(2)

decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。

本例为1),

参数1ength表示所截取的长度(本例为10)。

decodechrom.m

%将二进制编码转换成十进制

pop2=decodechrom(pop,spoint,length)

pop1=pop(:

spoint:

spoint+length-1);

pop2=decodebinary(pop1);

2.2.3 

calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

calobjvalue.m

%实现目标函数的计算

[objvalue]=calobjvalue(pop)

temp1=decodechrom(pop,1,10);

%将pop每行转化成十进制数

x=temp1*10/1023;

%将二值域 

中的数转化为变量域 

的数

objvalue=10*sin(5*x)+7*cos(4*x);

%计算目标函数值

2.3 

计算个体的适应值

calfitvalue.m

%计算个体的适应值

fitvalue=calfitvalue(objvalue)

global 

Cmin;

Cmin=0;

[px,py]=size(objvalue);

px

if 

objvalue(i)+Cmin>

temp=Cmin+objvalue(i);

else

temp=0.0;

fitvalue(i)=temp;

fitvalue=fitvalue'

;

2.4 

选择复制

选择或复制操作是决定哪些个体可以进入下一代。

程序中采用赌轮盘选择法选择,这种方法较易实现。

根据方程 

pi=fi/∑fi=fi/fsum 

,选择步骤:

1) 

在第 

代,由

(1)式计算 

fsum 

和 

pi 

2) 

产生 

的随机数 

rand( 

.),求 

s=rand( 

.)*fsum

3) 

求 

∑fi≥s 

中最小的 

,则第 

个个体被选中

4) 

进行 

次2)、3)操作,得到 

个个体,成为第 

t=t+1 

代种群

selection.m

%选择复制

[newpop]=selection(pop,fitvalue)

totalfit=sum(fitvalue);

%求适应值之和

fitvalue=fitvalue/totalfit;

%单个个体被选择的概率

fitvalue=cumsum(fitvalue);

%如 

fitvalue=[1 

4],则 

cumsum(fitvalue)=[1 

10] 

ms=sort(rand(px,1));

%从小到大排列

fitin=1;

newin=1;

while 

newin<

=px

if(ms(newin))<

fitvalue(fitin)

newpop(newin)=pop(fitin);

newin=newin+1;

fitin=fitin+1;

2.5 

交叉

交叉(crossover),群体中的每个个体之间都以一定的概率 

pc 

交叉,即两个个体从各自字符串的某一位置

(一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。

例如,假设2个父代个体x1,x2为:

x1=0100110

x2=1010001

从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:

y1=0100001

y2=1010110

这样2个子代个体就分别具有了2个父代个体的某些特征。

利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。

事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。

crossover.m

%交叉

[newpop]=crossover(pop,pc)

newpop=ones(size(pop));

2:

px-1

if(rand<

pc)

cpoint=round(rand*py);

newpop(i,:

)=[pop(i,1:

cpoint),pop(i+1,cpoint+1:

py)];

newpop(i+1,:

)=[pop(i+1,1:

cpoint),pop(i,cpoint+1:

)=pop(i);

)=pop(i+1);

2.6 

变异

变异(mutation),基因的突变普遍存在于生物的进化过程中。

变异是指父代中的每个个体的每一位都以概率 

pm 

翻转,即由“1”变为“0”,

或由“0”变为“1”。

遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。

mutation.m

%变异

[newpop]=mutation(pop,pm)

pm)

mpoint=round(rand*py);

mpoint<

=0

mpoint=1;

newpop(i)=pop(i);

any(newpop(i,mpoint))==0

newpop(i,mpoint)=1;

newpop(i,mpoint)=0;

2.7 

求出群体中最大得适应值及其个体

best.m

%求出群体中适应值最大的值

[bestindividual,bestfit]=best(pop,fitvalue)

bestindividual=pop(1,:

);

bestfit=fitvalue

(1);

i=2:

fitvalue(i)>

bestfit

bestindividual=pop(i,:

bestfit=fitvalue(i);

2.8 

主程序

%遗传算法主程序

genmain05.m

clear

clf

popsize=20;

%群体大小

chromlength=10;

%字符串长度(个体长度)

pc=0.6;

%交叉概率

pm=0.001;

%变异概率

pop=initpop(popsize,chromlength);

%随机产生初始群体

20 

%20为迭代次数

[objvalue]=calobjvalue(pop);

%计算目标函数

fitvalue=calfitvalue(objvalue);

%计算群体中每个个体的适应度

[newpop]=selection(pop,fitvalue);

%复制

[newpop]=crossover(pop,pc);

[newpop]=mutation(pop,pc);

[bestindividual,bestfit]=best(pop,fitvalue);

%求出群体中适应值最大的个体及其适应值

y(i)=max(bestfit);

n(i)=i;

pop5=bestindividual;

x(i)=decodechrom(pop5,1,chromlength)*10/1023;

pop=newpop;

fplot('

10*sin(5*x)+7*cos(4*x)'

[0 

10])

hold 

on

plot(x,y,'

r*'

off

[z 

index]=max(y);

%计算最大值及其位置

x5=x(index)%计算最大值对应的x值

y=z

【问题】求f(x)=x 

10*sin(5x) 

7*cos(4x)的最大值,其中0<

=x<

=9 

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 

【程序清单】 

%编写目标函数 

function[sol,eval]=fitness(sol,options) 

x=sol

(1);

eval=x 

10*sin(5*x) 

7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下 

initPop=initializega(10,[0 

9],'

fitness'

%生成初始种群,大小为10 

[x 

endPop,bPop,trace]=ga([0 

[],initPop,[1e-6 

1],'

maxGenTerm'

25,'

normGeomSelect'

... 

[0.08],['

arithXover'

],[2],'

nonUnifMutation'

[2 

25 

3]) 

%25次遗传迭代 

运算借过为:

7.8562 

24.8553(当x为7.8562时,f(x)取最大值24.8553) 

注:

遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2 

【问题】在-5<

=Xi<

=5,i=1,2区间内,求解 

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 

x2.^2)))-exp(0.5*(cos(2*pi*x1) 

cos(2*pi*x2))) 

22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 

%源函数的matlab代码 

[eval]=f(sol) 

numv=size(sol,2);

x=sol(1:

numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 

22.71282;

%适应度函数的matlab代码 

[sol,eval]=fitness(sol,options) 

numv=size(sol,2)-1;

eval=f(x);

eval=-eval;

%遗传算法的matlab代码 

bounds=ones(2,1)*[-5 

5];

[p,endPop,bestSols,trace]=ga(bounds,'

) 

前两个文件存储为m文件并放在工作目录下,运行结果为 

0.0000 

-0.0000 

0.0055 

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。

matlab命令行执行命令:

7*cos(4*x)'

[0,9]) 

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。

xoverops是传递给交叉函数的参数。

mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<

eval=x+10*sin(5*x)+7*cos(4*x);

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;

x+10*sin(5*x)+7*cos(4*x)'

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1