制冷技术英文版Ch1109064Word格式文档下载.docx

上传人:b****5 文档编号:19811817 上传时间:2023-01-10 格式:DOCX 页数:12 大小:400.49KB
下载 相关 举报
制冷技术英文版Ch1109064Word格式文档下载.docx_第1页
第1页 / 共12页
制冷技术英文版Ch1109064Word格式文档下载.docx_第2页
第2页 / 共12页
制冷技术英文版Ch1109064Word格式文档下载.docx_第3页
第3页 / 共12页
制冷技术英文版Ch1109064Word格式文档下载.docx_第4页
第4页 / 共12页
制冷技术英文版Ch1109064Word格式文档下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

制冷技术英文版Ch1109064Word格式文档下载.docx

《制冷技术英文版Ch1109064Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《制冷技术英文版Ch1109064Word格式文档下载.docx(12页珍藏版)》请在冰豆网上搜索。

制冷技术英文版Ch1109064Word格式文档下载.docx

Fig.11-2Classificationofcondensers[1]

11-2)Water-CooledCondensers

Typesofwater-cooledcondenserscanbeclassifiedaccordingtotheirconstruction(Fig.11-2).Eachhasfeaturesthatmakeitsuitableforcertainapplication.

(1)Double-pipecondenser

Fig.11-3,Double-pipewater-cooledcondenser

Fig.11-4Circularandtrombonedouble-tubecondenser[11]

Fig.11-5Doublepipecondenserwithcleanabletubes

(2)Shell-and-coilcondenser壳盘管冷凝器

Fig.11-6Shell-and-coilcondenser(verticaltype)[1]

(3)Shell-and-tubecondenser壳管冷凝器

Theshell-and-tubecondenserconsistsofacylindricalmetalshellandanumberofstraighttubeswhicharearrangedinparallelandheldinplaceattheendsbytubesheets.Therearetwomaintypesofshell-and-tubecondensers:

horizontalandvertical.

a)Horizontalshell-and-tubecondenser

Fig.11-7Two-passshellandtubecondenser

b)Verticalshell-and-tubecondensers

Fig.11-10Verticalshell-and-tubecondenser

(4)Heattransferinwatercooledcondenser

Thefollowingequationisusedtocalculateheattransferinwatercooledcondenser.

(11-1)

where

:

Heattransferrate,kW.

overallheattransfercoefficient,kW/m2K

Heattransferarea,m2

meaneffectivetemperaturedifference(METD),K

Theoverallheattransfercoefficient:

(11-2)

thermalresistanceinrefrigerantside

thermalresistanceoftubewall

thermalresistanceofwaterfouling

thermalresistanceinwaterside

ratioofoutsidetoinsidetubesurfacearea

Sincethetemperatureofcoolingmediaisconstantlychanginginacondenser,thetemperaturedifferencebetweenthetherefrigerantandthecoolingmediaisnotconstant,asseeninFig.11-11.AmeantemperaturedifferencebetweenthemmustbedeterminedforEquation11-1.IthasbeenfoundthattheMeanEffectiveTemperatureDifference(METD)isthebestwaytorepresentthismeantemperaturedifference,whichcanbeobtainedfromthefollowingequation:

(11-3)

temperaturedifferenceatoneendofthecondenser,K

temperaturedifferenceatotherendofthecondenser,K

Fig.11-11Temperatureprofileinacondenser

AswecanfindfromEquation11-1,increasing

i.e.,METD,isoneofthewaystoenhanceheattransferforthecondensers.Themeantemperature,

canbeincreasedbytheflowarrangementinthecondensers.Counterflowandparallelflowsaretwocommonarrangementsappliedtoshell-and-tubeheatexchangers.Foragivensetofrequiredconditions,thecounterflowarrangmentgivesagreaterMETDthantheparallelflowarrangementdoes.However,theMETDisaffectedbytheflowarrangementwhentherefrigerantiscondensedfromsaturatedvaportosaturatedliquidbecausethethetemperatureoftherefrigerantisconstantinthisprocess(Fig.11-11).

Inordertoincreasetheheattransferperformanceofcondensers,theoverallthermalresistance,

shouldbeassmallaspossible.OfthefourelementsinvolvedinEquation11-2,thethermalresistanceofmetaltubewallresistanceRwistheleastsignificantandcanbeignored.usually.Thus,thekofacondenserisdeterminedprimarilybytheotherthreefactorsandusuallythefoulingresistanceandtheliquidfilmresistancearethemostsignificant.Table11-1comparesthethermalresistancesinawatercooledcondenserwiththeammoniaasrefrigerant.

Table11-1Thermalresistancesinawatercooledcondenser

Thermalresistancetype

Heattransfercoefficient(

Thermalresistance

Condensationofrefrigerant

10602

9.4×

10-5

Lubricationoilfilm*

2500~3333

3~4×

10-4

Thermalconduction(steeltube)

18182

5.5×

Foulingofwater

2674

3.74×

Convectionofwater

4759

2.10×

Total

923.5

10.83×

*:

Thisisspecialforammonia.Someoftherefrigerantsdonothavethistypeofresistancebecausethelubricationoilcandissolveintheserefrigerants.

11-3)CoolingTower冷却塔

(1)TypesofCoolingTowers

Fig.11-13MechanicalDraftCoolingTower[13]

(2)CoolingTowerPerformance

Fig.11-14Rangeandapproachofcoolingtowers

(11-4)

(3)Make-upwaterandpurging(补充水和排污)

Incoolingtowers,evaporationandwaterdropletscarriedawaybytheairflowarethetwocausesofwaterloss.Also,waterinthetowerbasinshouldberegularlyremovedtopreventtheaccumulationofthedissolvedsolids.Forthesereasons,itisessentialtosupplyenoughmake-upwatertothecoolingtower.

Theevaporatedwaterdoesnotcarryawaythesolids,sothattheconcentrationofthesolidswouldreachalevelatwhichtheywouldprecipitateoutofthewateronsurfacesasacoating,orscale.Thiswillreducetheeffectivenessofthecondenser.

Fig.11-15Make-upandpurgingofacoolingtower

(11-5)

Andthemake-upwaterhasthustobe:

(11-9)

11-4)Air-CooledCondensers

Fig11-16,Air-cooledcondenser(naturaldrafttypewithwirefins)[15]

Fig.11-17Typicalforceddraftaircondenserarrangement

11-5)EvaporativeCondensers蒸发式冷凝器

Fig.11-18Schematicdiagramofevaporativecondenser

References

1.DossatR.J.,PrinciplesofRefrigeration,ThirdEdition,Prentice-Hall,Inc.1991.

2.WangS.K.HandbookofAirconditioning&

Refrigeration,McGraw-Hill,1994.

3.GosneyM.W.,PrinciplesofRefrigeration,CambridgeUniversityPress,1982

4.Source:

Perry’sChemicalEngineersHandbook(Page:

12-17),McGraw-Hill,1997

5.BureauofEnergyEfficiency,MinistryofPower,India.CoolingTowers.In:

Energy

6.EfficiencyinElectricalUtilities.Chapter7,pg135-151.Edward,2004

7.ZhuP.G.Theprincipleandcalculationofheatexchangers.TsinghuaPub.Comp.,Beijing.1987.7

8.WuY.Z.Theprincipleandequipmentofrefrigeration.XianJiaotongPress.,Xian,1998.1

9.WuY.Z.Designofrefrigerationsystem.MechanicalPress.Beijing,1988

10.ZhengX.D.Theprincipleandequipmentofrefrigeration.MechanicalPress.Beijing,1988

11.

12.

13.http:

//www.geo4va.vt.edu/A2/A2.htm

14.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 图表模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1