分子细胞生物学复习资料汇总Word格式.docx

上传人:b****6 文档编号:19723340 上传时间:2023-01-09 格式:DOCX 页数:24 大小:41.36KB
下载 相关 举报
分子细胞生物学复习资料汇总Word格式.docx_第1页
第1页 / 共24页
分子细胞生物学复习资料汇总Word格式.docx_第2页
第2页 / 共24页
分子细胞生物学复习资料汇总Word格式.docx_第3页
第3页 / 共24页
分子细胞生物学复习资料汇总Word格式.docx_第4页
第4页 / 共24页
分子细胞生物学复习资料汇总Word格式.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

分子细胞生物学复习资料汇总Word格式.docx

《分子细胞生物学复习资料汇总Word格式.docx》由会员分享,可在线阅读,更多相关《分子细胞生物学复习资料汇总Word格式.docx(24页珍藏版)》请在冰豆网上搜索。

分子细胞生物学复习资料汇总Word格式.docx

其原理是用乙烯醋酸盐聚合体膜覆盖在被选择的细胞上,然后用红外激光熔化膜,这时膜与组织在目标位置牢固结合,当膜被提起时,仅目标细胞留在膜上,这些细胞直接在膜上进行裂解,再进行2DE分离及蛋白质组分析或用SELDIT0F进行分离与分析。

此方法大大提高了随后分析(2DE,SELDI.TOF等)的重现性和准确性,是目前较为理想的细胞提取工具,已经用于膀胱癌、结肠癌等标本的准备

3.细胞亚微结构的分级分离p7-8

(1)差速离心法.(根据细胞亚微结构的颗粒大小和密度差别,采用不同离心速度分离各种结构)

(2)密度梯度离心法(根据亚微结构的密度差别达到离心的目的,用蔗糖、甘油或氯化铯作为密度梯度的介质,高速离心机40000r/min,被分离物质分布在相应的密度带内)

(3)激光剪

(三)、生物大分子的操作

1.放射性同位素是跟踪生物大分子活动必不可少的工具

(1)放射自显影术(主要用于核酸)p8-9

分类a:

整体放射自显影(用肉眼观察,RFLP技术中,32p标记的DNA的放射自显影)

b:

体外培养细胞的放射自显影(借助显微镜观察,将细胞放在盖玻片上培养)

c:

显微(超微)放射自显影(借助显微镜或电子显微镜观察,含放射性同位素组织

切片的放射自显影)

感光材料:

X光胶片,液体乳胶

(2)放射性同位素的定量测定p9-10

种类:

a:

盖革计数器(常用于检测污染,特点见ppt)

b:

液闪计数器(特点和例子见ppt)

(3)脉冲-跟踪技术p10-11(采用同位素跟踪技术研究生物大分子代谢活动的方法)

基本步骤和研究实例见ppt

2.确定核酸和蛋白质分子的大小以及分离和纯化核酸和蛋白质

(1)电泳法p11(需要从凝胶中进一步分离大分子,分离效果好,分离量小)

a.琼脂糖凝胶p11b.电泳脉冲电泳p11c.等点聚焦p12

d.SDS-聚丙烯酰胺凝胶电泳p12e.双向电泳p12f.PAGEp12

脉冲场凝脉电泳(Pulsedfieldgelelectrophoresis,PFGE),是近年发展起来的一种重要的分离大分子量线性DNA分子的电泳技术。

PFGE的基本原理是在琼脂糖凝胶上外加交变的脉冲电场,其方向、时间和电流大小交替改变,每当电场方向发生改变时,大分子DNA便滞留在凝胶孔内,直至沿新的电场轴重新定向后,才能继续向前泳动,DNA分子越大,这种重新定向需要的时间就越长,当DNA分子改变方向的时间小于脉冲时间时,DNA就可以按照其分子量大小分开,经EB染色后在凝胶上出现按DNA大小排列的电泳带型。

等电聚焦电泳

等电聚焦电泳(IFE,isoelectricfocusingelectrophoresis)  利用特殊的一种缓冲液(两性电解质)在凝胶(常用聚丙烯酰胺凝胶)内制造一个pH梯度,电泳时每种蛋白质就将迁移到等于其等电点(pI)的pH处(此时此蛋白质不再带有净的正或负电荷),形成一个很窄的区带。

基本原理在IEF的电泳中,具有pH梯度的介质其分布是从阳极到阴极,pH值逐渐增大。

如前所述,蛋白质分子具有两性解离及等电点的特征,这样在碱性区域蛋白质分子带负电荷向阳极移动,直至某一pH位点时失去电荷而停止移动,此处介质的pH恰好等于聚焦蛋白质分子的等电点(pl)。

同理,位于酸性区域的蛋白质分子带正电荷向阴极移动,直到它们的等电点上聚焦为止。

可见在该方法中,等电点是蛋白质组分的特性量度,将等电点不同的蛋白质混合物加入有pH梯度的凝胶介质中,在电场内经过一定时间后,各组分将分别聚焦在各自等电点相应的pH位置上,形成分离的蛋白质区带。

(2)离心法p13(方便,分离量大,分离效果不如电泳法好)

速率-区带离心法p13密度梯度离心p13

(3)色谱法p14(常用此法大量分离未变性的蛋白质和DNA,色谱柱越长分离效果越好,自制色谱柱)

凝胶过滤色谱法p14离子交换色谱法p14亲和力色谱法p14-15

(4)透析p15(将蛋白质或核酸与其它小分子和离子分开)

(5)PCR技术p15

◆简并引物(degenerateprimer)

定义:

获得序列未完全清楚的核酸的一种引物设计方案,特点是所设计的引物序列某位置的核苷酸可以分别是两个或两个以上不同的碱基,结果所合成的引物是该位置上不同序列的混合物。

简并引物是指代表编码单个氨基酸所有不同碱基可能性的不同序列的混合物。

为了增加特异性,可以参考密码子使用表,根据不同生物的碱基使用偏好,减少简并性。

  

核苷酸链中除出现正常的A、T、G、C四种碱基符号外还出现如R、Y、M、K等其它字母(其中R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/T,H=A/C/T,B=C/G/T,V=A/C/G,D=A/G/T,N=A/C/G/T)。

◆巢式引物(nestedprimer)

为巢式聚合酶链反应所设计的引物,第二组引物是在第一组引物扩增得到的产物序列范围内设计的。

巢式PCR

巢式PCR是一种变异的聚合酶链反应(PCR),使用两对(而非一对)PCR引物扩增完整的片段。

第一对PCR引物扩增片段和普通PCR相似。

第二对引物称为巢式引物(因为他们在第一次PCR扩增片段的内部)结合在第一次PCR产物内部,使得第二次PCR扩增片段短于第一次扩增。

巢式PCR的好处在于,如果第一次扩增产生了错误片断,则第二次能在错误片段上进行引物配对并扩增的概率极低。

因此,巢式PCR的扩增非常特异。

巢式PCR通过两轮PCR反应,使用两套引物扩增特异性的DNA片断。

第二对引物的功能是特异性的扩增位于首轮PCR产物内的一段DNA片断。

第一轮扩增中,外引物用以产生扩增产物,此产物在内引物的存在下进行第二轮扩增。

从而提高反应的特异性。

巢式PCR,可以在10的六次方基因组背景下检测到一个拷贝的病毒基因,也不像二次PCR容易产生成片的产物,是效果最好的PCR,但也因此是最容易污染的PCR。

◆实时荧光定量PCR原理

所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。

1.Ct 

值的定义

在荧光定量PCR技术中,有一个很重要的概念 

—— 

Ct值。

C代表Cycle,t代表threshold,Ct值的含义是:

每个反应管内的荧光信号到达设定的域值时所经历的循环数(如图1所示)。

2.荧光域值(threshold)的设定

PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍,即:

threshold 

10 

´

 

SDcycle 

6-15

3.Ct值与起始模板的关系

研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系〔1〕,起始拷贝数越多,Ct值越小。

利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值(如图2所示)。

因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。

4.荧光化学

荧光定量PCR所使用的荧光化学可分为两种:

荧光探针和荧光染料〔2〕。

现将其原理简述如下:

1)TaqMan荧光探针:

PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。

探针完整时,报告基团发射的荧光信号被淬灭基团吸收;

PCR扩增时,Taq酶的5’-3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。

如图3所示。

2)SYBR荧光染料:

在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA双链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR产物的增加完全同步。

3.确定蛋白质的氨基酸成分

(1)蛋白质的氨基酸组成p15

分解蛋白质成游离氨基酸(6NHCl,110度,24h)

离子交换色谱法分离不同的氨基酸并确定其含量(氨基酸分析仪)

(2)蛋白质的氨基酸序列p16

降解法:

异硫氰酸苯酯(特异性与肽链氨基端aa结合在一起,成环后脱下一个aa,可循环)

微酸环境

离子交换色谱法确定环状化合物的性质

氨基酸测序仪

(3)用抗体检测蛋白质并作定量分析p16

1ELISA

两级抗体,酶或荧光物质作为标记物,灵敏度很高

2Westernblot

灵敏度高,能检测出非常少量的蛋白质

4.确定DNA序列

(1)传统测序法--双脱氧链终止法p16

(2)新一代测序技术p17

(四)、生物芯片技术

A.生物芯片技术是一种大通量的生物分析技术(效率高,准确率高,所需样品量小);

生物芯片是这一分析技术中的信息储存或分析的材料。

1.主动式芯片技术p18-17(概念特点见ppt)

(1)PCR芯片

(2)心脏内置芯片

(3)胎儿异常红细胞分离芯片

2.被动式芯片技术

(1)寡核苷酸芯片技术p19-20

主要用途,所需设备,工作原理,举例,优点,缺点见ppt

(2)基因芯片技术p20-22

种类,支撑物,命名,设备,用途,原理,优点,缺点见ppt

(3)蛋白质芯片技术p22

研究蛋白质间的互作;

研究蛋白质与DNA之间的互作;

药物筛选。

(4)细胞芯片

(5)组织芯片

(6)全基因组覆瓦式寡核苷酸芯片技术p22

在全基因组水平上分析基因表达

分析DNA和RNA水平上调控基因表达的调控成分

其他用途:

鉴定DNA缺失或插入突变体

B.基于测序的全基因组表达分析技术(转录组技术;

数字基因表达谱)p22

基于测序的全基因组表达分析技术与全基因芯片技术比较:

可以发现新基因;

鉴定不同的转录本;

数据分析相对复杂;

成本相对高。

(五)、生物信息学分析方法

生物信息学是生命科学领域和信息科学领域一门新兴的、应用型交叉学科,采用

数理和信息科学的理论、技术和方法分析生物数据,为人类解释生命现象提供一条心途径。

1.分析核苷酸序列和结构p23

①基因功能预测:

BLAST(BasicLocalAlignmentSearchTool)是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。

BLAST程序能迅速与公开数据库进行相似性序列比较。

BLAST结果中的得分是对一种对相似性的统计说明。

  BLAST采用一种局部的算法获得两个序列中具有相似性的序列。

BLAST的功能  BLAST对一条或多条序列(可以是任何形式的序列)在一个或多个核酸或蛋白序列库中进行比对。

BLAST还能发现具有缺口的能比对上的序列。

②基因结构预测:

GenScan

③基因evolution

④基因mutation

2.分析蛋白质序列和结构p23

3.分析蛋白质的三维结构p24

(六)、分离和克隆基因

1.同源序列法p24

2.差异筛选法p24

3.突变体法(转座子和反转座子标签法;

T-DNA插入法)p24

4.图位克隆法p25-27

原理:

用该方法分离基因是根据功能基因在基因组中都有相对稳定的基因座,在利用分子标记技术对目的基因进行精确定位的基础上,用于目的基因紧密连锁的分子标记筛选DNA文库,从而构建目的基因区域的物理图谱,在利用此物理图谱通过染色体步移逐步逼近目的基因或通过染色体登陆的方法,最终克隆目的基因并通过遗传转化实验可以研究目的基因的功能。

步骤

(1)建立目的基因的遗传分离群体

(2)找到与目的基因紧密连锁的分子标记

(3)用遗传图或物理作图将目的基因定位在染色体特定位置

(4)构建含有大插入片段的基因组文库

(5)以与目的基因连锁的分子标记为探针筛选基因组文库

(6)用阳性克隆构建目的基因区域的跨叠群

(7)通过染色体步移、登陆或跳查,获得含有目标基因的大片段克隆

(8)通过亚克隆获得目标的小片段克隆

(9)通过遗传转化和功能互补验证,最终确定目标基因的碱基序列。

(七)、蛋白质组学的研究方法

1.鉴定蛋白质的功能p28-29

2.研究蛋白质的功能状态p29

3.研究蛋白质的相互作用p29-30

(1)蛋白质芯片技术

(2)酵母双杂交系统p29-30

(3)免疫共沉淀技术p30

免疫共沉淀(Co-Immunoprecipitation,Co-IP)是利用抗原和抗体的特异性结合以及细菌的ProteinA或G特异性地结合到免疫球蛋白的Fc片段的现象开发出来的方法。

其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于Agarose珠上的ProteinA或G,若细胞中有与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:

“目的蛋白—兴趣蛋白—抗兴趣蛋白抗体—ProteinA或G”,经变性聚丙烯酰胺凝胶电泳,复合物又被分开。

然后经免疫印迹或质谱检测目的蛋白。

这种方法得到的目的蛋白是在细胞内与兴趣蛋白天然结合的,符合体内实际情况,得到的结果可信度高。

这种方法常用于测定两种目标蛋白质是否在体内结合;

也可用于确定一种特定蛋白质的新的作用搭档。

(4)双分子荧光技术p30

4.研究蛋白质-DNA互作p30-31

(1)酵母单杂交系统p30

(2)凝胶阻滞技术p31(原理见ppt)

(3)染色质免疫共沉淀技术p31(原理见ppt)

第二章细胞的分子组成

蛋白质和核酸的结构特点和与此相关的功能。

一、蛋白质

(一)、蛋白质的基本结构特点

1.Motif(模体)

(1)Helix-loop-helix

(2)Zincfingermotif

(3)Coiled-coilmotif

2.Domain(结构域)

3.三维结构相似的蛋白质多有相似的氨基酸序列

4.伴侣蛋白

5.蛋白质具有传染疾病的能力

(二)、酶

(三)、抗体

1.抗体可区分非常相似的分子

2.抗体可用来分离和纯合蛋白质

3.单克隆抗体及其应用

4.抗体可催化化学反应

二、核酸

(一)、核酸研究的新技术-给染色体着色

(二)、反义链技术在生产和医疗上的应用

(三)、基因表达的调控

1.发育过程中基因表达的调控-甲基化

2.RNA水平上的基因沉默

(4)抑制基因的活性

(5)发育过程中调控基因的表达

3.RNA引导的DNA甲基化

4.依赖于RNAi的异染色质形成

(四)、RNA在医学临床上的应用

1.RNA介导的基因表达抑制

(6)反义RNA技术

(7)Trans-cleavingribozymes

(8)RNA干扰技术

2.RNA介导的基因修复

3.RNA与蛋白质相互作用

(五)、RNA在特殊位置被降解或沉默

(六)、植物染色体的共线性

4.不同物种间染色体上基因排列顺序相似

5.水稻不同染色体之间也具有一定程度的共线性

三、脂类

(一)、生物膜的主要组成成分

6.微团

7.脂质双层

8.脂质体

(二)、Leptin调控脂类代谢

四、糖

(一)、细胞表面糖类性质的变化与细胞的生长发育和病变密切相关

(二)、糖分子参于细胞中大分子的定向输送以及细胞-细胞识别过程

1.大分子定向输送

2.细胞间相互识别

第三章细胞膜和物质运输(8学时)

生物膜对各种物质的运输机制。

二、细胞膜的结构特点

(一)、细胞膜的脂质双层由不同脂类分子构成

(二)、构成细胞膜的脂类和蛋白质可在细胞膜中运动

(三)、细胞膜蛋白质与细胞骨骼的连接影响蛋白质的排列和可动性

(四)、细胞膜的流动性取决于组成细胞膜的脂类成分和温度

1.温度

2.脂类成分

(五)、细胞外被使大多数细胞的表面带负电荷

三、细胞膜的物质运输

(一)、膜运输蛋白分类

3.泵

4.通道蛋白

5.运输子

(1)Uniporter

(2)Symporter

(3)Antiporter

(二)、被动运输

2.简单扩散

(1)借助于脂质双层扩散

(2)借助于通道蛋白扩散

3.协助扩散

4.细胞-细胞通道

(1)缝隙连接中的通道

(2)胞间连丝中的通道

(三)、主动运输

1.泵类运输蛋白的分类

(1)P类

(2)V类

(3)F类

(4)ABC类

2.钠钾离子泵

3.钙离子泵

4.氢离子泵

5.ABC运输蛋白

6.癌细胞的细胞膜对多种药物的运输

(四)、伴随运输

1.同向伴随运输

(1)葡萄糖和氨基酸与钠离子伴随运输

(2)含氢离子的同向伴随运输

2.反向伴随运输

(1)钙离子-钠离子反向伴随运输

(2)反向伴随运输调节细胞中的pH

(3)含阴离子的反向伴随运输

(4)植物和真菌细胞中的液泡上存在多个反向伴随运输系统

(五)、代谢过程伴随物质运输

(六)、蛋白质的运输

1.NH2-末端信号肽

2.膜受体

3.跨膜蛋白质通道

4.蛋白质移动装置-马达蛋白

(1)热激蛋白70

(2)SecA

(3)与核蛋白体有关联的蛋白质合成因子

5.蛋白质折叠形成三维结构

(七)、水的运输(渗透压作用)和细胞体积的调节

1.动物细胞可通过调节细胞内渗透压维持其正常体积

2.植物细胞通过改变细胞内的渗透压控制叶片气孔的开关

(八)、内吞作用

1.受体调节的内吞作用

(1)被运输物质与受体结合和内吞作用

(2)Clathrin在内吞进细胞中的膜泡外形成网络样外套

(3)酸性环境使被内吞的物种与受体分开

(4)大多数膜受体和形成内吞小体的生物膜被再利用

(5)细胞对高密度脂蛋白(HDL)的内吞作用

2.依赖于小窝(caveolae)的内吞作用

(九)、病毒和毒素入侵细胞

1.许多病毒通过内吞作用进入细胞

2.HIV和其它膜包病毒通过与细胞膜融合进入细胞

第四章生物膜、分泌蛋白质、溶酶体蛋白质的生物合成和分配(6学时)

蛋白质合成、修饰和定向分配的分子机制。

一、细胞膜脂类物质的合成

(一)、磷脂在生物膜的界面合成

(二)、蛋白质flippase使新合成的磷脂分子分布到生物膜的两脂质层

(三)、动、植物细胞中其它生物膜的磷脂来源于滑面内质网

二、膜蛋白质、分泌蛋白质和溶酶体蛋白质的合成

(一)、新合成肽链的信号肽引导核蛋白体附着在内质网上

(二)、肽链穿过内质网膜进入内质网腔

1.信号识别蛋白

2.信号识别蛋白受体

3.膜通道蛋白质

4.伴侣蛋白Bip

(三)、合成结束的分泌蛋白质穿过内质网膜进入内质网腔

(四)、膜蛋白质合成

1.跨膜一次,NH3+端在内质网中,COO-端在细胞基质中

2.跨膜一次,NH3+端在细胞基质中,COO-端在内质网中

3.跨膜几次

4.蛋白质的一端镶嵌在生物膜中

5.膜附着蛋白质

(五)、内质网中蛋白质的修饰

1.二硫键在肽链合成过程中或合成刚结束就形成

2.形成多聚体蛋白质

(六)、内质网中蛋白质的定向输送

1.只有正常三维结构的蛋白质才能被送到高尔基复合体

2.N-连接糖链在定向输送中的作用

3.内质网中异常三维结构蛋白质的降解

4.内质网中蛋白质的聚集

5.内质网蛋白质被选择性地留在内质网中

(七)、高尔基复合体中蛋白质的修饰

1.O-连接糖蛋白的形成

2.N-连接糖蛋白的形成

(八)、高尔基复合体中蛋白质的定向输送

1.甘露糖-6-磷酸是溶酶体蛋白质的标志

2.前肽引导蛋白质到液泡

3.蛋白质的调节分泌和连续分泌

4.细胞膜不同部位蛋白质的定向输送

(九)、高尔基复合体是循环使用细胞膜的主要位点

(十)、蛋白质合成中的最后修饰-从前体蛋白质到成熟蛋白质

(十一)、运输小泡和蛋白质的定向输送

1.蛋白质外套和运输小泡的形成

(1)Clathrin

(2)Coatomer

(3)COPII蛋白质

2.运输小泡和受体膜融合

3.蛋白质的定向输送

(1)带运输信号的蛋白质被运输到指定部位

(2)带滞留信号的蛋白质被留在原处

(3)即无运输信号又无滞留信号的蛋白质通过bulkflow被运输

4.高尔基复合体囊泡间的运输小泡流向

5.磷酸肌醇参于调节运输小泡的形成和运输

第五章细胞核、线粒体、叶绿体、过氧化物酶体的形成(4学时)

细胞核的分子结构以及细胞核、线粒体、叶绿体和过氧化物酶体蛋白质的跨膜运输机理。

一、细胞核的形成

(一)、核膜的形成和分解5-1

1.板层状蛋白质是决定核结构的主要因素5-1

LaminaABC

核内膜上有laminB的受体

板层状蛋白与染色质结合

2.板

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1