5西师版小学数学五年级下册3认识方程 1Word下载.docx

上传人:b****6 文档编号:19633651 上传时间:2023-01-08 格式:DOCX 页数:10 大小:43.42KB
下载 相关 举报
5西师版小学数学五年级下册3认识方程 1Word下载.docx_第1页
第1页 / 共10页
5西师版小学数学五年级下册3认识方程 1Word下载.docx_第2页
第2页 / 共10页
5西师版小学数学五年级下册3认识方程 1Word下载.docx_第3页
第3页 / 共10页
5西师版小学数学五年级下册3认识方程 1Word下载.docx_第4页
第4页 / 共10页
5西师版小学数学五年级下册3认识方程 1Word下载.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

5西师版小学数学五年级下册3认识方程 1Word下载.docx

《5西师版小学数学五年级下册3认识方程 1Word下载.docx》由会员分享,可在线阅读,更多相关《5西师版小学数学五年级下册3认识方程 1Word下载.docx(10页珍藏版)》请在冰豆网上搜索。

5西师版小学数学五年级下册3认识方程 1Word下载.docx

重点

了解方程的意义,会用方程表示简单情境中的等量关系。

难点

正确区分等式与方程的含义。

◆教学准备

教师准备:

课件、投影仪等。

学生准备:

稿纸、笔。

◆教学过程

(一)新课导入:

1.创设情境。

(1)出示一个天平,让学生说一说天平的工作原理。

(2)在天平的左边放2个小苹果,右边放一个大梨子。

使天平平衡。

提问:

这里天平平衡了,说明了什么?

(两边的物体重量相等)

追问:

这样我们就可以用一个等式来表示这两个量的关系。

板书:

2个苹果的重量=一个梨子的重量。

再问:

如果用χ表示一个苹果的重量,两个苹果的重量就用什么表示?

如果梨子的重量为300克,那么这个等量关系式还可以怎样表示?

学生小组交流后得出结论:

2χ=300

(3)同学们写出的式子里有什么?

它表示什么含义?

学生回答:

式子里的χ表示一个苹果的重量,2χ表示两个苹果的重量;

而两个苹果的重量与一个梨子的重量相等。

2.揭示课题:

同学们刚才写的等式里,含有一个未知数,今天我们就来探究含有未知数的等式。

板书课题:

方程

设计意图:

用操作天平的形式来让学生感受到等量之间的关系,并初步形成等量关系式,能吸引学生的注意力,提高学生的学习兴趣。

还渗透了等式和未知数两个概念,为方程的学习做准备。

(二)探究新知:

1.教学例1:

(1)课件出示例1的主题图:

一天,叔叔到城里买了电视机、电风扇等电器,他买完了电器,高高兴兴地挑着往家走,我们一起去看看叔叔买的电器吧!

同学们请观察情境图,说一说你从图中获得了哪些信息?

(叔叔买的电视机重15千克,担子另一头的大米重20千克)

(2)你们能根据情境图中的信息,写出等式吗?

学生分析情境图中各个量之间的关系,写出等式。

小组交流。

各自在小组里说一说自己写出的等式。

反馈汇报:

电扇重+15=2020-15=电扇重20-电扇重=15

(3)如果电扇重χ千克,你们还能写出等式吗?

试一试。

学生根据要求,独立写等式。

举手汇报自己写出的等式。

χ+15=2020-15=χ20-χ=15

(4)质疑:

想一想刚才写的等式,与我们以前学习的等式有什么区别?

学生观察写出的等式,寻找这些等式的特点,寻找等式的区别之处。

指名汇报:

今天学习的等式中含有未知数χ,而以前的等式没有未知数。

让学生根据问题情境,找出数量关系得到等量关系,并引导学生列出含有未知数的等式,为后面的方程的定义学习打下基础。

2.教学例2

(1)课件出示教材81页情境图

提出要求:

请同学们认真观察,了解图中的数学信息。

(2)6万元可以买多少张?

列出算式:

1.2=5(张)

(3)提问:

你是根据要么等量关系写出这个算式的?

因为“单价×

数量=总价”,所以“总价÷

单价=数量”。

如果用y表示买的张数,1张1.2万元,y张是多少元?

你能再写出等式吗?

汇报:

y张是1.2y元,因为是用6万元买了y张,所以可以写出等式为1.2y=6。

3.揭示方程的定义

(1)这节课我们学习了像χ+15=20、1.2y=6……这样的等式,这些含有未知数的等式叫方程。

(2)说一说,在方程“1.2y=6”中,哪些是已知数?

哪些是未知数?

(3)小结:

在列方程的时候,已知数要列入方程中,未知数也要列入方程中,即未知数与已知数一样参与列式。

4.尝试练习

(1)提出要求:

同学们已经掌握了什么是方程,你们能写出哪些不同的方程?

请独自写一写。

(2)学生独立写方程,教师巡视。

(3)指名全班汇报。

对学生汇报中的错误,要引导学生分析错误原因,引起学生的注意,以期在以后的学习中不要犯同样错误。

在引导学生写含有未知数的等式的过程中,感知方程的特征,逐步理解方程概念的本质,揭示方程的定义。

(三)巩固新知:

1.完成82页“课堂活动”第1题。

(1)请同学们观察分析每幅图中小动物的话,分析它们说得对不对。

(2)学生独立思考,作出判断后,和同伴交流,说清楚各自的想法。

2.完成82页“课堂活动”第2题。

(1)请同学们审清每句话,分析各题的数量关系,然后列出方程。

(2)学生寻找数量关系,并与同伴交流数量关系。

(3)根据数量关系列出方程。

(4)指名全班汇报,学生汇报预测:

3.完成82页“练习二十三”第1题。

(1)先分析每一个等式,找出方程,再连线。

(2)学生独立完成后,教师指名汇报,集体订正。

(四)达标反馈

习题;

1.在是方程的式子后面的括号里画“○”,不是方程的式子后面的括号里画“△”。

 8+3x(  )9+x>20(  )8+3=11(  )10x=0(  )

2.看图列方程。

列方程:

_____________________

________________________

3.根据题意找等量关系式并列出方程。

1公顷森林一年可滞尘约32吨,森林公园有x公顷森林,一年可滞尘约7936吨。

等量关系式:

长方形的长是12米,宽是x米,周长是38米。

答案:

1.△△△○2.3x=394x+4.8=12

3.32x=7936(12+x)×

2=38

(五)课堂小结

你这节课的收获和大家交流一下!

小结:

1.认识了方程,知道了方程是含有未知数的等式。

2.判断一个式子是不是方程,一要看它是不是等式,二要看它是否含有未知数,这两个条件缺一不可。

让学生及时总结本节课所学知识,同时学生通过总结所学知识的过程中,提高了复习巩固的能力。

(六)布置作业

1.课堂练习,完成练习二十三的第2、3题。

2.列方程。

(1)x的3倍减去5等于13。

(2)比x小36的数是70。

(3)20加上x的4倍的和等于30。

(4)x的30.2倍是1.51。

3.看图列方程。

 

妈妈用去x元。

方程          

2.3x-5=13x-36=7020+4x=3030.2x=1.51

3.X+12.5=50

◆板书设计

3.认识方程

电扇重+15=2020-15=电扇重20-电扇重=15

χ+15=2020-15=χ20-χ=15

1.2y=6

含有未知数的等式叫作方程。

◆教学反思

本节课是方程的认知课,而对本节抽象的方程知识的教学,体现了以下几个特点:

1、充分动手操作情境,激发学生的学习兴趣。

教学中,首先设置了用天平的工作原理,体会相等的关系,从而引出等量的关系,再通过引导学生列出含有未知数的等式,初步感知方程;

然后又通过教材中的两个问题情境,让学生再次列出含有未知数的等式,让学生在情境中加深对方程的理解。

2、运用对比分析的方法,辨析关系,加深对方程的理解。

教学中让学生分析情境中的数量关系,写出含有未知数的等式,并要求学生把含有未知数的等式与不含未知数的等式相比较,分析它们的相同点和不同点,从中感知方程的特点,形成方程的概念。

3、对方程的认识过程是一个从表面趋向本质的渐进过程。

所以在学生了解方程概念的基础上,还要通过尝试练习、课堂活动等形式,让学生在练习中,进一步感知方程是用等式表示数量关系,它是由已知数和未知数共同组成,表达的相等关系是现象,事件中最主要的是等量关系。

◆教学资料包

(一)教学精彩片段

1.故事引入。

播放曹冲称象的视频片断

(1)提问:

曹操要称出大象的重量,而曹冲却称出了船上石头的重量,他为什么这样做呢?

引导学生思考:

大象的重量等于船上石头的重量,但大象不能分开称,而石头去可以分多次称,所以曹冲用称石头的办法,就可以得出大象的重量。

(2)如果曹冲称得石头的重量是2吨,而大象的重量我们用χ表示,你能用一个式子表示大象与石头之间的重量关系吗?

学生得出:

χ=3或3=χ

(3)追问:

同学们写出的式子里有什么?

回答:

式子里有χ,表示大象的重量不知道;

式子里有等号,表示大象的重量与χ相等。

2.揭示课题:

板书课题:

方程

设计意图:

用故事引入新课,能吸引学生的注意力,提高学生的学习兴趣。

而且故事情节中渗透了等式和未知数两个概念,为新知的学习做准备。

(2)数学资源

1、根据下面两个式子,求A、B。

A+A+A+B+B=17A+A+B+B+B=18

A=()

B=()

2、有8个鱼缸中放着数量相同的鱼,如果从每个鱼缸中取出5条来,则8个鱼缸中所剩下的鱼的总数正好等于原来3个鱼缸中鱼的总数。

原来每个鱼缸有()条。

1.A=3B=4点拔:

把两式相加得:

5A+5B=5(A+B)=35,所以A+B=7,这里把A+B=7代入1式,得2(A+B)+A=17,解出A=3,再把A=3代入1式,得出B=4。

2.设原来每个鱼缸有X条。

8(X-5)=3X解得:

X=8。

(三)说课设计

(1)教材分析

教材的地位与作用:

“认识方程”对于小学生来说,是由具体的、确定的数过渡到用字母表示抽象的、可变的数,是认识上的一次飞跃。

这部分内容是学生从算术的学习转向代数学习的重要转折点,更是初中学习代数的重要基础。

因此,“认识方程”的教学内容在数学知识体系中占有重要的地位和作用。

(2)学情分析

认识方程是学生首次接触的新知识。

是在学生学习了一定的算术知识,已经初步接触了一点代数知识的基础上进行学习的。

由于学生长时期习惯用算术方法解决问题,开始学习方程时,往往会有一定的困难。

根据新课标的要求,教材特点和学生的年龄特点和心智水平。

在教学中,要循序渐进,让学生通过算术的方法,从中找到等量关系式,一步步引入到代数式,最后形成方程。

(3)教学目标

本单元是学生系统学习方程的开始。

所以这节课制定了以下学习目标:

结合具体情境,理解方程的意义,会用方程表示简单情境中的等量关系。

在观察、分析、比较、抽象、概括和操作交流中,经历将现实问题抽象成等式与方程的过程,积累将现实问题数学化的活动经验。

使学生在积极参与数学活动的过程中,感受探索的乐趣,获得成功的体验,增强学好数学的信心。

(4)重点、难点

重点:

了解方程的意义,会用方程表示简单情境中的等量关系。

难点:

(5)教法、学法

教法:

采用直观教学法,观察法,小组讨论等教学方法,为学生创设一个宽松的学习环境,使得他们能积极主动地,充满自信的学习数学。

学法:

在特定的数学情境中自主探究,小组合作交流,激发学生的学习积极性和主动性,增强学生学习知识的自信心。

(6)说教学过程

1.初步感知

通过引导学生操作天平,找到天平平衡的原理与等式的关系。

从天平中找到等量关系式,再通过引导学生找已知的量和未知的量,并提出假设,就是未知的量用一个字母来表示,这样得出一个含有未知数的等式。

告诉学生这就是方程。

让学生在课前就能什么是方程。

为后面的学习打下基础。

2.探索发现

通过现实的生活情境,让学生在情境中,利用事件发展的顺序找到数量间的等量关系,这是列方程的依据。

接着引导学生对照条件和问题,找到等量关系式中的已知条件和未知条件的对应关系。

接着引导学生如果把未知条件用一个字母来表示。

这样就能列出一个含有未知数的等式,这就是方程。

接着让学生利用以前学习过的典型的数量关系:

如行程问题,单价问题等。

利用这些典型的数量关系来找等量关系,并列方程解决问题。

学生对问题就能迎刃而解了。

在综合了前面所列的含有未知数等式后,让学生再一次对比这些等式与前面的等式的相同点和不同点。

使学生明白是等式不一定是方程,但方程一定是等式。

所以方程必须有两点要求,一是它必须是等式,二是它一定要含有未知数。

这样学生对方程就更加明晰了。

3.巩固应用

通过课堂活动练习和练习中的练习,让学生在自主解答的基础上,再通过小组合作的形式来明确方程的解题思路和解答方法。

进一步巩固学生解决问题的步骤意识。

规范学生的解题方法和过程。

4.归纳总结

让学生交流一下这节课的收获,通过交流学生对整节课的知识有一个整体的认识:

知道什么是方程,知道了方程是含有未知数的等式。

最重要的是强调判断一个式子是不是方程的方法,就是看两点:

一要看它是不是等式,二要看它是否含有未知数,这两个条件缺一不可。

5.说板书

认识方程

电扇重+15=2020-15=电扇重20-电扇重=15

本节课的板书体现了对应性,就是按列方程的步骤和方法来展示。

所以板书的第一层就是分析数量关系,找到等量关系式,无论是按事件发展的顺序,还是生活中典型的数量关系。

第二层就是对应等量关系式,通过对应的已知条件和未知量来列出含有未知数的等式,也就是方程。

量后总结出方程的定义就是:

含有未知数的等式。

这种板书具有明确的指示性。

学生看的明白,易于记忆。

(四)资料链接

有关方程的历史知识

方程这个名词,最早见于我国古代算术《九章算术》,《九章算术》是在我国东汉初年,编定的一部现在传本的最古老的中国数学经典著作,书中收集了246个应用问题和问题的解法,分为九章,“方程”是其中的一章,在这一章里所谓方程是指一次方程组。

古代是将它用算筹布置起来解的,我国古代数学家刘徽注释《九章算术》说:

“程,课程也,二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程。

”这里所谓“如物数程之”。

是指有几个未知数就必须列出几个方程,一个方程组各未知数用算筹表示时好比方阵,所以叫做方程。

上述方程的概念,在世界上要数《九章算术》中的“方程”最早出现,其中解方程的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产,这一成就进一步证明:

中华民族是一个充满智慧的伟大民族。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 建筑土木

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1